OpenMP

Parallélisation multitaches
pour machines & mémoire partagée

Intervenants :

Rémi Lacroix
Thibaut Véry

<prenom.nom@idris.fr>

\_ /

Auteurs :
Jalel Chergui
Pierre-Francois Lavallée

ET DES RESSOURCES . )
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
O N




Droits de reproduction 2

OpenMP

Copyright @ 2001-2020 CNRS/IDRIS

ET DES RESSOURCES ‘
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




OpenMP : plan 3

1 — Introduction . . . . . . . . . . . 8
1.1 — Historique . . . . . . . . . . o e e e e e e e 9
1.2 — Spécifications OpenMP . . . . . . . . . . . ... 10
1.3 — Terminologie et définitions . . . . . . . . . . . .. .. .. ... ..., 11
1.4 — Concepts généraux . . . . . . . . . v v v i i e e e e e e e 12

1.4.1 — Modele d’exécution . . . . . . . . . . . ... . 12
1.4.2 — Processus légers (threads) . . . . . . . . . 0. 13
1.5 — Fonctionnalités . . . . . . . . . . . . ... 16
1.6 — OpenMP versus MPI . . . . . . . . . . . . .. ... . 17
1.7 — Bibliographie . . . . . . . . . . . e e 19

2 — Principes . . . . . . e e e e e e e 20

2.1 — Interface de programmation . . . . . . . . . . ... ... ... 20
2.1.1 — Syntaxe générale d’une directive . . . . . . . . ... ... ... ... 21
2.1.2 — Compilation . . . . . . . . . . . . e 23

2.2 — Construction d’une région parallele . . . . . . .. ... .. ... ..... 24

2.3 — Statut des variables . . . . . . . .. ... 26
2.3.1 — Variables privées . . . . . . . . . ... e 26
2.3.2 — La clause DEFAULT . . . . . . . . . .. . ... ... . .. ..... 28

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




OpenMP : plan 4

2.3.3 — Variables statiques . . . . . . . . . L Lo 29
2.3.4 — Allocation dynamique . . . . . . . . . ... ... ... 31
2.3.5 — Equivalence entre variables Fortran . . . . . . . . ... ... ... .. 33
2.4 — Etendue d’une région parallele. . . . . . . ... ... ... 0. 34
2.9 — Transmission par arguments . . . . . . . . . . ..o e e e e 36
2.6 — Compléments . . . . . . . . . e e 37
3 — Partage du travail . . . . . . . ... 39
3.1 —Introduction . . . . . . . . .. e 39
3.2 —Boucle parallele . . . . . . . ..o 40
3.2.1 — Clause SCHEDULE . . . . . . . . . . . . i i it ittt e, 41
3.2.2 — Cas d’une exécution ordonnée . . . . . .. .. . ... ... ...... 45
3.2.3 —Cas d’'uneréduction . . . . . . . . . . . ... e 46
3.2.4 — Cas de la fusion dun nid de boucles . . . . . . .. ... ... ..... 47
3.2.5 — Compléments . . . . . . . . . . . ... e 49
3.3 — Construction WORKSHARE . . . . . . . . . . . . . . . i ii ., 51
3.4 — Sections paralleles . . . . . . . .. 54
3.4.1 — Construction SECTIONS . . . . . . . . . . . v ittt e . 55
3.4.2 — Compléments . . . . . . . . . . . .. e 56

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




OpenMP : plan 5

3.5 — Exécution exclusive . . . . . . . . ... e 57
3.5.1 — Construction SINGLE . . . . . . . . . . . . . . v v it 58
3.5.2 — Construction MASTER . . . . . . . . . . . . i i it i 60

3.6 — Procédures orphelines . . . . . . . . ... oL o 61

3.7 — Récapitulatif . . . . .. . ..., 63

4 — Synchronisations . . . . . . . . . ... 64

4.1 — Barriere . . . . . .. e e e e e e e e 66

4.2 — Mise a jour atomique . . . . . . . . ... e e e e e e e e 67

4.3 — Régions critiques . . . . . . . . .. e 69

4.4 — Directive FLUSH . . . . . . . . . . . . . e e 71
4.4.1 — Exemple avec un piege facile . . . . . . .. ... 72
4.4.2 — Exemple avec un piege difficile . . . . . . . ..o o000 73
4.4.3 — Commentaires sur les codes précédents . . . . . ... ... .. .... 74
4.4.4 — Code corrigé . . . . . . . . . e e e e e e 75
4.4.5 — Nid de boucles avec double dépendance . . . . . . . ... ... .... 76

4.5 — Récapitulatift . . . . . . . . . 82

5 — Vectorisation SIMD . . . . . . . . . ..o 83

5.1 — Introduction . . . . . . . . . . .. 83

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




OpenMP : plan 6

5.2 — Vectorisation SIMD d’une boucle . . . . . . .. .. .. ... ... ..., 84
5.3 — Parallélisation et vectorisation SIMD d’une boucle . . . . ... ... .. 85
5.4 — Vectorisation SIMD de fonctions scalaires . . . . . . .. .. ... .... 86
6 — Les taches OpenMP . . . . . . . . . . 87
6.1 — Introduction . . . . . . . . . 87
6.2 — Les bases du concept . . . . . . . ... L e 88
6.3 — Le modele d’exécution des taches . . . . . . . . .. ... ... 89
6.4 — Quelques exemples . . . . . . . . 91
6.5 — Dépendance entre taches . . . . . . . . ... o L0 95
6.6 — Statut des variables dans les taches . . . . . . . .. ... ... .. 97
6.7 — Exemple de MAJ des éléments d’une liste chainée . . . . . . . . . .. .. 98
6.8 — Exemple d’algorithme récursif . . . . . . .. . ... ... ... ... .. 99
6.9 — Clauses FINAL et MERGEABLE . . . . . . . . . . .« v v v v v v it 100
6.10 — Synchronisation de type TASKGROUP . . . . . . . .. . ... ... .... 101
7T—AffNItés . . . . . e e 103
7.1 — Affinité des threads . . . . . . . . . . . o 103
7.1.1 — Commande cpuinfo . . . . . . . . . . . e 104
7.1.2 — Utilisation de la variable d’environnement KMP_AFFINITY . . . . . 106
RIS s, o & 1 vy




OpenMP : plan 7

7.1.3 — Affinité des threads avec OpenMP 4.0 . . . . . . . . . . . ... ... .. 108
7.2 — Affinité mémoire . . . . . . . L L e 110
7.3 — Stratégie < First Touch > . . . . . . . . . . . . . . . e, 113
7.4 — Exemples d’impact sur les performances . . . . . . .. ... ... .... 114

8 — Performances . . . . . . . . .. e 118
8.1 — Regles de bonnes performances . . . . ... .. ... ... ........ 119
8.2 — Mesures dutemps . . . . . . . .. e e 122
8.3 — Accélération . . . . . . . . e e 123

9 —Conclusion . . . . . . . . e e e e 124

10 — ANNexes . . . . . . o e e e e e e e e e e 125
10.1 — Parties non abordéesici. . . . . . . . . . . . ... .. 125
10.2 — Quelques pieges . . . . . . ... e e e e e e 126

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




1 — Introduction 8

1 — Introduction

1= OpenMP est un modele de programmation parallele qui initalement ciblait
uniquement les architectures a mémoire partagée. Aujourd’hui, il cible aussi les
accélérateurs, les systemes embarqués et les systemes temps réel.

1 Les taches de calcul peuvent accéder a un espace mémoire commun, ce qui limite la
redondance des données et simplifie les échanges d’information entre les taches.

iz En pratique, la parallélisation repose sur 1'utilisation de processus systeme légers
(ou threads), on parle alors de programme multithreadé.

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




1 — Introduction : historique 9

‘ 1.1 - Historiquel

1= La parallélisation multithreadée existait depuis longtemps chez certains
constructeurs (ex. CRAY, NEC, IBM, ...), mais chacun avait son propre jeu de
directives.

1 Le retour en force des machines multiprocesseurs a mémoire partagée a poussé a
définir un standard.

= La tentative de standardisation de PCF (Parallel Computing Forum) n’a jamais été
adoptée par les instances officielles de normalisation.

1 Le 28 octobre 1997, une majorité importante d’industriels et de constructeurs ont
adopté OpenMP (Open Multi Processing) comme un standard dit < industriel .

= Les spécifications d’OpenMP appartiennent aujourd’hui a 'ARB (Architecture Review
Board), seul organisme chargé de son évolution.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
.,r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




1 — Introduction : spécifications OpenMP 10

‘ 1.2 — Spécifications OpenMPI

i Une version OpenMP 2 a été finalisée en novembre 2000. Elle apporte surtout des
extensions relatives a la parallélisation de certaines constructions Fortran 95.

1= La version OpenMP 3 datant de mai 2008 introduit essentiellement le concept de
tache.

1= Les versions OpenMP 4 de juillet 2013 puis OpenMP 4.5 de novembre 2015 apportent
de nombreuses nouveautés, avec notamment le support des accélérateurs, des
dépendances entre les taches, la programmation SIMD (vectorisation) et
I’optimisation du placement des threads.

i La version OpenMP 5 de novembre 2018 se concontre principalement sur
I’amélioration du support des accélérateurs. Elle apporte également des
améliorations sur les taches, la gestion des mémoires non uniformes et le support
des versions récentes des langages C (11), C++ (17) et Fortran (2008).

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
.,r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




1 — Introduction : terminologie et définitions 11

‘ 1.3 — Terminologie et déﬁnitionsl

= Thread : Entité d’exécution avec une mémoire locale (stack)

i Team : Un ensemble de un ou plusieurs threads qui participent a ’exécution d’une
région parallele.

= Task/Tache : Une instance de code exécutable et ses données associées. Elles sont
générées par les constructions IFVINNEAN ou INEIA.

1 Variable partagée : Une variable dont le nom permet d’accéder au méme bloc de
stockage au sein d’une région parallele entre taches.

1= Variable privée : Une variable dont le nom permet d’accéder a différents blocs de
stockage suivant les taches, au sein d’une région parallele.

= Host device : Partie matérielle (généralement noeud SMP) sur laquelle OpenMP
commence son exécution.

= Target device : Partie matérielle (carte accélératrice de type GPU ou Xeon Phi) sur
laquelle une partie de code ainsi que les données associées peuvent éetre transférées
puis exécutées.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
., ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




1 — Introduction : concepts généraux 12

‘ 1.4 — Concepts générauxl
‘ 1.4.1 — Modele d’exécutionl

0123 ﬁb taches

= A son lancement, un programme OpenMP est séquentiel. Il I

est constitué d’un processus unique, le thread maitre dont

. ~ . . . o e EEEN
le rang vaut 0, qui execute la tache implicite initiale.

i OpenMP permet de définir des régions paralleles, c’est
a dire des portions de code destinées a étre exécutées en
parallele.

1 Au début d’une région parallele, de nouveaux processus
légers sont créés ainsi que de nouvelles taches implicites,
chaque thread exécutant sa tache implicite, en vue de se
partager le travail et de s’exécuter concurremment.

i Un programme OpenMP est une alternance de régions .
séquentielles et de régions paralleles.

Y

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r. I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

sdwa |




1 — Introduction : concepts généraux 13

1.4.2 — Processus légers (threads)

Processus légers

i Chaque processus léger exécute sa propre AARRERRE
séquence d’instructions, qui correspond a sa
tache.

i C’est le systeme d’exploitation qui choisit
lordre d’exécution des processus (légers ou
non) : il les affecte aux unités de calcul dispo-
nibles (coeurs des processeurs).

Gestionnaire
de taches

Processeurs

iz ]I n’y a aucune garantie sur l'ordre global
d’exécution des instructions d’un programme
parallele.

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




1 — Introduction : concepts généraux 14

Espace variables partagées

Piles
(variables loce

1= Les taches d’un méme programme partagent 1’espace  processus égers
mémoire de la tache initiale (mémoire partagée) mais
disposent aussi d’un espace mémoire local : la pile (ou
stack).

1 ] est ainsi possible de définir des variables partagées
Région

(stockées dans la mémoire partagée) ou des variables padise
privées (stockées dans la pile de chacune des taches). =

\

Processus

Ensemble d’instructions

Programme

ET DES RESSOURCES . '
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




1 — Introduction : concepts généraux 15

i Bin mémoire partagée, il est parfois nécessaire
d’introduire une synchronisation entre les taches
concurrentes.

1= Une synchronisation permet par exemple d’éviter
que deux threads ne modifient dans un ordre quel-
conque la valeur d’'une méme variable partagée
(cas des opérations de réduction).

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
',r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




1 — Introduction : fonctionnalités 16

‘ 1.5 — Fonctionnalitésl

OpenMP facilite I’écriture d’algorithmes paralleles en mémoire partagée en proposant des
mécanismes pour :

1 partager le travail entre les taches. Il est par exemple possible de répartir les
itérations d’une boucle entre les taches. Lorsque la boucle agit sur des tableaux,
cela permet de distribuer simplement le traitement des données entre les processus
légers.

I partager ou privatiser les variables.
iz synchroniser les threads.

Depuis la version 3.0, OpenMP permet aussi d’exprimer le parallélisme sous la forme d’un
ensemble de taches explicites a réaliser. OpenMP-4.0 permet de décharger une partie du
travail sur un accélérateur.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
., ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




1 — Introduction : openMP versus MPI 17

‘ 1.6 — OpenMP versus MPII

Ce sont des modeles de programmation adaptées a deux architectures paralleles
différentes :

1= MPI est un modele de programmation a mémoire distribuée. La communication
entre les processus est explicite et sa gestion est a la charge de 1'utilisateur.

1= OpenMP est un modele de programmation a mémoire partagée. Chaque thread a une
vision globale de la mémoire.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
', ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




1 — Introduction : openMP versus MPI 18

Noeud 1

1= Sur une grappe de machines
. , . Taches OpenMP
indépendantes  (noeuds)  multiproces- f
seurs a mémoire partagée, la mise en Noeud 0

: e e A :

ceuvre d’une parallélisation a deux ni- Programme
veaux (MPI et OpenMP) dans un méme W RSEECIED
programme peut etre un atout majeur
pour les performances paralleles ou Processus MPI
I’empreinte mémoire du code.

Noeud 2

Noeud 3

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




1 — Introduction : bibliographie 19

‘ 1.7 — Bibliographie I

i Premier livre sur OpenMP : R. CHANDRA & al., Parallel Programmaing in OpenMP,
éd. Morgan Kaufmann Publishers, oct. 2000.

i Livre plus récent sur OpenMP : B. CHAPMAN & al., Using OpenMP, MIT Press, 2008.
i Spécifications du standard OpenMP : http://www.openmp.org/

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘,r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry



http://www.openmp.org/

2 — Principes : interface de programmation 20

‘2.1 — Interface de programmationl
*

O Directives et clauses de compilation : elles servent

a définir le partage du travail, la synchronisation Comp”at.on Directives
et le statut privé ou partagé des données;
® Lonctions et sous-programmes : ils font partie *
d’une bibliotheque chargée a 1’édition de liens du
programime. Edltlon de Ilens+ Bibliotheque
® Variables d’environnement : une fois positionnées,
leurs valeurs sont prises en compte a 1’exécution.

Variables

Exécution «
d’environnement

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




2 — Principes : interface de programmation 21

‘2.1.1 — Syntaxe générale d’une directivel

i Une directive OpenMP possede la forme générale suivante :

sentinelle directive [clause[ clause]...]

1= Les directives OpenMP sont considérées par le compilateur comme des lignes de
commentaires a moins de spécifier une option adéquate de compilation pour qu’elles
soient interprétées.

1= La sentinelle est une chaine de caracteres dont la valeur dépend du langage utilisé.

= ]| existe un module Fortran 95 [(EMAEE et un fichier d’inclusion C/C++ qui
définissent le prototype de toutes les fonctions OpenMP. 1l est indispensable de les
inclure dans toute unité de programme OpenMP utilisant ces fonctions.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
.,r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




2 — Principes : interface de programmation 22

1= Pour Fortran, en format libre :

1$ use [N

! $0MP PARALLEL PRIVATE(a,b) &
! $OMP FIRSTPRIVATE(c,d,e)

| $0MP END PARALLEL ! C’est un commentaire

1= Pour Fortran, en format fixe :

'$ use [N

C$OMP PARALLEL PRIVATE(a,b)
C$0MP1 FIRSTPRIVATE(c,d,e)

C$0OMP END PARALLEL

i Pour C et C++

#include <omp.h>

#pragma omp parallel private(a,b) firstprivate(c,d,e)

{ ...}

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




2 — Principes : interface de programmation 23
‘2.1.2 — Compilationl
Voici les options de compilation permettant d’activer 'interprétation des directives
OpenMP par certains compilateurs :
i Compilateur GNU : -fopenmp
gfortran -fopenmp prog.£f90 # Compilateur Fortran
i Compilateur Intel : -fopenmp ou -qopenmp
ifort -fopenmp prog.f90 # Compilateur Fortran
1 Compilateur IBM : -gsmp=omp
x1lf_r -qsuffix=f=f90 -qnosave -qgsmp=omp prog.f90 # Compilateur Fortran
Exemple d’exécution :
export [UIZNVIRNGIIIVE]=4 # Nombre de threads souhaité
./a.out # Exécution
O | AN — O o & 2. viny




2 — Principes : construction d’une région parallele 24

‘2.2 — Construction d’une région parallélel

i Un programme OpenMP est une alternance de
régions séquentielles et paralleles (modele < fork

and join >) | fork
= A Pentrée d’une région parallele, le thread maitre - ;\i ———————

(celui de rang 0) crée/active (fork) des proces- région
sus < fils > (processus légers) et autant de taches

implicites. Ces processus fils exécutent leur tache parallele
implicite puis disparaissent ou s’assoupissent en L
fin de région parallele (j0in). P

n de région par (join) i - join

i En fin de région parallele, 'exécution rede-
vient séquentielle avec uniquement ’exécution du
thread maitre.

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




2 — Principes : construction d’une région parallele 25

1z Au sein d’'une méme région parallele, tous les
threads exécutent chacun une tache implicite
différente, mais composée du méme code.

i Par défaut, les variables sont partagées.

iz ][] existe une barriere implicite de synchroni-
sation en fin de région parallele.

program parallel
'$ use
implicit none
real
logical

a

end program parallel

92290; p=.false.
1 $0MP PARALLEL

EIRIEN 0MP_IN_PARALLEL[@)

print *,"A vaut

! $0MP END PARALLEL
printx*,"Parallel 7:", p

cva
irop

n
s a

> ifort -fopenmp prog.£f90
> export [BUIERIUEE:IINE]=4

> a.out

A
A
A
A
P

92290
92290
92290
92290

arallele 7 : T

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



2 — Principes : statut des variables 26

‘2.3 — Statut des Variablesl
‘ 2.3.1 — Variables privées I

- _ program parallel
La clause 2NN permet de changer le sta 'S nse

tut d’une variable. implicit none
. . . ., real 1roa
1 Si une variable possede un statut privé, elle integer :: rang
est allouée dans la pile de chaque tache. 4 = 992000

1> Les variables privées ne sont pas initialisées a ! 30MP_PARALLEL PRIVATE(rang,a)
=a+290

I’entrée d’une région parallele. a

print *,"Rang : ",rang, &
" A vaut "a
1 $0MP END PARALLEL
print*,"Hors region, A vaut :",a

vaut : 290
vaut : 290
vaut : 290

Rang :
Rang :

Rang : ;
Rang : ; vaut : 290
Hors region, A vaut : 92000

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




2 — Principes : statut des variables

27

i Cependant, grace a la clause IGEINZRATNND,
il est possible de forcer l'initialisation d’une
variable privée a la derniere valeur qu’elle
avait avant ’entrée dans la région parallele.

a a a a
92299229l 92290 9224

i Fn sortie de région parallele, les variables
privées sont perdues.

program parallel
implicit none
real :: a

a = 92000.

| $0MP PARALLEL FIRSTPRIVATE(a)
a=a + 290

print *,"A vaut : ",a
| $OMP END PARALLEL
print*,"Hors region, A vaut :",a

end program parallel

> ifort -fopenmp prog.f90
> export [SVIEBICVEEY;IEANNNN=4

> a.out

A vaut : 92290
A vaut : 92290
A vaut : 92290
A
H

vaut : 92290
ors region, A vaut : 92000

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



2 — Principes : statut des variables 28

‘2.3.2 — La clause DEFAULTI

iz Par défaut, les variables sont partagées mais program parallel
pour éviter les erreurs, il est recommandé de iiplffil
définir le statut de chaque variable explicite- logical :: p
ment. p=.false.

! $0MP PARALLEL DEFAULT(NONE) &

i La clause NAFNUREQENHY permet d’obliger le ' $0MP SHARED (p)
programmeur a expliciter le statut de chaque KN OMP_IN_PARALLEL[@
variable. | $0MP END PARALLEL

print*,"Parallel 7:", p
end program parallel

iz En Fortran, il est aussi possible de changer le

statut implicite des variables en utilisant par
exemple la clause |DIHFNIHNCANIYND].

ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




2 — Principes :

statut des variables

29

‘ 2.3.3 — Variables statiquesl

1= Une variable statique est une variable
conservée pendant toute la durée de
vie d'un programme.

» En Fortran, c’est le cas des va-
riables apparaissant en COMMON ou
dans un MODULE ou déclarées SAVE
ou initialisées a la déclaration (ins-
truction DATA ou symbole =).

» En C/C++, ce sont les variables
déclarées avec le mot clé static.

i Dans une région parallele OpenMP, une
variable statique est par défaut une
variable partagée.

program parallel
use var_stat
implicit none
real :: a
common /bidon/a

1 $OMP PARALLEL

call sub()

| $0MP END PARALLEL

end program parallel
subroutine sub()

use var_stat

use

implicit none

real a, b=10.

integer :: rang

common /bidon/a

e 0!'P_GET_THREAD_NUM[Q)

a=rang;b=rang;c=rang

1 $0MP BARRIER

print *,"valeurs de A, B et C
end subroutine sub

"
,a,b,c

> ifort -fopenmp var_stat.f90 prog.£f90

> export [UZNIIEENEITANE]=2;a. out

module var_stat
real :: c

end module var_stat

Un résultat possible est :

L - .
INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
. EN INFORMATIQUE SCIENTIFIQUE

R. Lacroix & T. Véry



2 — Principes : statut des variables 30

iz [utilisation de la directive INEINIZRATNNS program parallel
'$ use

permet de privatiser une instance statique (pour implicit none
les threads et non les taches...) et faire que celle- integer :: a
. . KL , . Iale 3 common/bidon/a
cl so1t persistante d’'une reégion parallele a une | $OMP THREADPRIVATE (/bidon/)
autre. a = 92000
. o | $0OMP_PARALLEL COPYIN(/bidon/)
i Si, en outre, la clause [iI@N est spécifiée alors NG OMP_GET_THREAD_NUM[@)
: . . call sub()
la valeur des instances statiques est transmise a |G T BAEALIEL

tous les threads. print*,"Hors region, A vaut:",a
end program parallel

subroutine sub()
implicit nomne

bidon

a=92000 integer :: a, b
common/bidon/a
| $0OMP THREADPRIVATE(/bidon/)
b =a + 290
print *,"B vaut : ",b

end subroutine sub

B vaut : 92290
B vaut : 92291
B vaut : 92292

B vaut : 92293
Hors region, A vaut : 92000

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




2 — Principes : statut des variables 31

‘ 2.3.4 — Allocation dynamiquel

L’opération d’allocation/désallocation dynamique de mémoire peut étre effectuée a
I'intérieur d’une région parallele.
1= Si opération porte sur une variable privée, celle-ci sera locale a chaque tache.

i Si 'opération porte sur une variable partagée, il est alors plus prudent que seul un
thread (p. ex. le thread maitre) se charge de cette opération. Pour des raisons de
localité des données, il est recommandé d’initialiser les variables a l'intérieur de la
région parallele (< first touch >).

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




2 — Principes : statut des variables

32

program parallel

1$ use [N
implicit none
integer :: n,debut,fin,rang,nb_taches,i

real, allocatable, dimension(:) :: a

n=1024

allocate(a(n))
! $0MP PARALLEL DEFAULT(NONE) PRIVATE(debut,fin,nb_taches,rang,i) &

! $0MP SHARED(a,n) IF(n .gt. 512)
nb_taches=[){INGUENOIIEIATON () ; rang=[ViGgVIIT VIR ()
debut=1+(rang*n) /nb_taches
fin=((rang+1)*n)/nb_taches
do 1 = debut, fin

a(i) = 92290. + real(i)
end do
print *,"Rang :

deallocate(a)
end program parallel

",rang,"; A(",debut,"),...,A(",fin,") : ",a(debut),",...,",a(fin)

> export [SUIERIGUENNIEINNEI=4;a. out

OpenMP — V. 2.10 — Octobre 2020

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

R. Lacroix & T. Véry



2 — Principes : statut des variables 33

‘2.3.5 - Equivalenee entre variables Fortranl

program parallel
implicit none
real :: a, b
equivalence(a,b)

a = 92290.

iz Ne mettre en équivalence que des variables de | $0MP PARALLEL PRIVATE(b) &

A | $OMP SHARED (a)
meme statut. print *,"B vaut : ",b

| $OMP END PARALLEL
end program parallel

i Dans le cas contraire, le résultat est
indéterminé.

1 Ces remarques restent vraies dans le cas d’une > ifort -fopenmp prog.f90
1at1 - P_NUM_THREADS Sl HEW
association par POINTER. export [UIFMIUTFTIANE=4;a. out

-0.3811332074E+30
0.0000000000E+00

-0.3811332074E+30
0.0000000000E+00

-,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




2 — Principes : étendue d’une région parallele 34

= [’étendue d’une construction OpenMP représente
le champ d’influence de celle-ci dans le pro- 1$ use

gramine. logical :: p
. T , . . '$ p = [REEININAS ()
1> [’influence (.ou. la portée) d’une région parallele '$ print *,"Parallele ?:", p
s’étend aussi bien au code contenu lexicalement end subroutine sub
dans cette région (étendue statique), qu’au code
des sous-programmes appelés. L’union des deux Bl ifort —fopenmp prog.f90

représente < ’étendue dynamique .

‘ 2.4 — Etendue d’une région parallélel

program parallel
implicit none
! $OMP PARALLEL

call sub()

! $0MP END PARALLEL

end program parallel
subroutine sub()

implicit nomne

> export [BUIZRNUEREIRNIEI=4;a . oul

Parallele
Parallele

Parallele
Parallele

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



2 — Principes

étendue d’une région parallele

35

i Dans un sous-programme appelé dans une
région parallele, les variables locales et ta-
bleaux automatiques sont implicitement privés
a chaque tache (ils sont définis dans la pile).

= En C/CH+, les variables déclarées a l'intérieur
d’une région parallele sont privées.

program parallel
implicit none

! $0MP PARALLEL DEFAULT (SHARED)

call sub()

! $OMP END PARALLEL

end program parallel
subroutine sub()

'$ use [NMNE]

implicit none

integer :: a

a = 92290

LD GET_THREAD_NUMIQ)
print *,"A vaut : ",a
end subroutine sub

> ifort -fopenmp prog.f90

> export [BUIZRNUERRIRNIEI=4;a . oul

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



2 — Principes : transmission par arguments

36

‘2.5 — Transmission par argumentsl

1z Dans une procédure, toutes les

(statique) de la région.

variables
transmises par argument (dummy parameters)
héritent du statut défini dans I’étendue lexicale

program parallel
implicit none
integer :: a, b

a = 92000

| $0MP PARALLEL SHARED(a) PRIVATE(b)
call sub(a, b)
print *,"B vaut : ",b

| $0MP END PARALLEL
end program parallel

subroutine sub(x, y)

1'$ use [UIZHHE
implicit none
integer :: x, ¥y

y = x + O EIAI O

end subroutine sub

> ifort -fo

> export [l
> a.out

penmp prog.f90
P_NUM_THREADS gl

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



2 — Principes : compléments 37

‘ 2.6 — Complémentsl

iz La construction d’une région parallele admet
deux autres clauses :

» iGN : pour les opérations de

réduction avec synchronisation implicite
entre les threads ;

»+ NUVEGIIADE : Elle permet de spécifier le

nombre de threads souhaité a 1’entrée
d’une région parallele de la meme
maniere que le ferait le sous-programme
OMP_SET_NUM_THREADSH

1= D’une région parallele a 'autre, le nombre de
threads concurrents peut étre variable si on le
souhaite.

program parallel
implicit none

! $OMP PARALLEL NUM_THREADS(2)
print *,"Bonjour !"
! $0MP END PARALLEL

! $0MP PARALLEL NUM_THREADS(3)
print *,"Coucou !"

! $0MP END PARALLEL
end program parallel

> ifort -fopenmp prog.£f90

> export [DUZNIIEEEITANE=4

> ./a.out

Bonjour !
Bonjour !
Coucou !

Coucou !
Coucou !

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



2 — Principes : compléments 38

= [l est possible d’imbriquer (nesting) des
régions paralleles, mais cela n’a d’effet
que si ce mode a été activé a 1appel
du sous-programme ou en
positionnant la variable d’environnement

. > ifort ... —-fopenmp prog.£f90
[OViZENioEREa) a la valeur true. > export [UZMIHId)=true; ./a.out
program parallel
'$ use [NUIZNRE:] Mon rang dans region 1
implicit nomne Mon rang dans region

integer :: rang Mon rang dans region

Mon rang dans region 1
! $0MP PARALLEL NUM_THREADS(3) &

Mon rang dans region

Mon rang dans region
Mon rang dans region 1
Mon rang dans region
Mon rang dans region

| $0OMP PRIVATE(rang)
Vol OMP_GET_THREAD_NUM[@),

print *,"Mon rang dans region 1

:",rang

! $§0MP PARALLEL NUM_THREADS(2) &

! $OMP PRIVATE(rang)

ibeleed OMP_GET_THREAD_NUM[@)
print *," Mon rang dans region 2 :",rang

! §OMP END PARALLEL

! §OMP END PARALLEL

end program parallel

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : introduction 39

3 — Partage du travail
‘3.1 — Introductionl

1 En principe, la création d’une région parallele et 1'utilisation de quelques fonctions
OpenMP suffisent a elles seules pour paralléliser une portion de code. Mais il est,
dans ce cas, a la charge du programmeur de répartir aussi bien le travail que les
données au sein d’une région parallele.

= Heureusement, des directives permettent de faciliter cette répartition (Il

WORKSHAREMSECTIONS)

i Par ailleurs, il est possible de faire exécuter des portions de code situées dans une

région parallele a un seul thread (ENINERY, VIEINAT).

1 La synchronisation entre les threads sera abordée dans le chapitre suivant.

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : boucle parallele 40

‘3.2 — Boucle parallélel

iz Une boucle est parallele si toutes ses itérations sont indépendantes les unes des
autres.

i (C’est un parallélisme par répartition des itérations d’une boucle.
1= La boucle parallélisée est celle qui suit immédiatement la directive [bil.

15 Les boucles < infinies > et do while ne sont pas parallélisables avec cette directive,
elles le sont via les taches explicites.

1 Le mode de répartition des itérations peut étre spécifié dans la clause EIQEibiiRd.

1 Le choix du mode de répartition permet de mieux controler I’équilibrage de la
charge de travail entre les threads.

1= Les indices de boucles sont par défaut des variables entieres privées, dont il n’est
pas indispensable de spécifier le statut.

i Par défaut, une synchronisation globale est effectuée en fin de construction [RININE]
a moins d’avoir spécifié la clause INolfNEY.

1= [l est possible d’introduire autant de constructions (les unes apres les autres)
qu’il est souhaité dans une région parallele.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
',r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




3 — Partage du travail : boucle parallele

41

program parallel

1$ use [N

‘3.2.1 — Clause SCHEDULEI
implicit none

integer, parameter :: n=4096

real, dimension(n) :: a
:: i, i_min, i_max, rang, nb_taches

integer :
! $0MP PARALLEL PRIVATE(rang,nb_taches,i_min,i_max)
rang =[0Iy VI () ; nb_taches=[UiZNYEUTIRVIIIDE] () ;

| $0MP DO SCHEDULE(STATIC,n/nb_taches)

do i =1, n
a(i) = 92290. + real(i) ; i_min=min(i_min,i) ;

end do

| $OMP END DO NOWAIT
: ",rang,"; i_min :",i_min,"; i_max :",i_max

print *,"Rang

! §OMP END PARALLEL

end program parallel

i_max=max(i_max,i)

i_min=n ; i_max=0

—fopenmp prog.f90 ; export [LURNUUENNEINEI=4 ; a.out

> ifort

2.10 — Octobre 2020

L - ,
INSTITUT DU DEVELOPPEMENT OpenM P — V .
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

R. Lacroix & T. Véry



3 — Partage du travail : boucle parallele 42

w La répartition consiste a divi- pequers 1 0] 112) 31 4
ser les itérations en paquets d’une taille
donnée (sauf peut-étre pour le dernier). Il
est ensuite attribué, d’une facon cyclique
a chacun des threads, un ensemble de pa-  chagedetavai [0/ 418 [1][5 5 6 37
quets suivant l’ordre des threads jusqu’a
concurrence du nombre total de paquets.

Répartition statique

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




3 — Partage du travail : boucle parallele

43

1= Nous aurions pu différer a 'exécution
le choix du mode de répartition des
itérations a 1’aide de la variable d’envi-
ronnement [VEZEEGIENINDY, ce qui peut
parfois engendrer une dégradation des
performances.

Le choix du mode de répartition des
itérations d’une boucle peut étre un
atout majeur pour 1'équilibrage de la
charge de travail sur une machine dont
les processeurs ne sont pas dédiés.

Attention : pour des raisons de per-
formances vectorielles ou scalaires,
éviter de paralléliser les boucles faisant
référence a la premiere dimension d’un
tableau multi-dimensionnel.

program parallel

1$ use [UUIZERE:

implicit nomne

integer, parameter :: n=4096
real, dimension(n) :: a
integer i, i_min, i_max

| $OMP PARALLEL DEFAULT(PRIVATE) SHARED(a)
i_min=n ; i_max=0

\!$OMP DO SCHEDULE(RUNTIME)‘
do i =1, n
a(i) = 92290. + real(i)

i_min=min(i_min,i)
i_max=max(i_max,1i)
end do
1 $0MP END DO

print*,"Rang:" , [UIZKGHENVIIIOIIUN () , &

";i min:",i_min,";i_max:",i_max

! $0MP END PARALLEL
end program parallel

> export [SIRIVYENY:ANNS]=2
> export [BUIZESIOGIONINAA="STATIC,1024"

> a.out

3072
4096

i_max:
i_max:

Rang: O ; i_min: 1 ;

Rang: 1 ; i_min: 1025 ;

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

RIS

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



3 — Partage du travail : boucle parallele 44

1= En plus du mode EIVNENY, il existe trois autres | > export [VEMEEEMIAd="DYNAMIC,480"
facons de répartir les itérations d’une boucle : | > export [HSHIONTMEIINERE=4 ; a.out

» YNGR : les itérations sont divisées
en paquets de taille donnée. Sitot qu’un Pacuets - [O) N 120 N8| I ISIY 7 | 8
thread épuise les itérations de son paquet, gepariion aynamique 2
un autre paquet lui est attribué;

‘*"/// g \
»+ [iiEaD] : les itérations sont divisées en dcgr?srglggeen};asvaii ( [ J (.
0

~
~
~

paquets dont la taille décroit exponentiel-
lement. Tous les paquets ont une taille
supérieure ou égale a une valeur donnée
a 'exception du dernier dont la taille peut
étre inférieure. Sitot qu’'un thread finit les
itérations de son paquet, un autre paquet

d’itérations lui est attribué. Paquets [0 [ (121 -@

'?

> export [UIEEIOI0RN="GUIDED, 256"
> export [UUIZRNOUEREINDEI=4 ; a.out

» [NINE]l : le choix de la répartition des repariion guidee

itérations de la boucle est délégué au com- o !
pilateur ou au systeme a ’exécution (i.e. Charge detravai i ﬁ (. ﬁ
dans le temps

< runtime ).

ET DES RESSOURCES . '
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : boucle parallele 45

‘3.2.2 — Cas d’une exécution ordonnéel

ww [l est parfois utile (cas de débogage)
d’exécuter une boucle d’une facon ordonnée.

1= [ordre des itérations sera alors identique

a celui correspondant a une exécution
séquentielle. > export [JVEZMEEIZNNH="STATIC,2"
> export [UZBIUUMEEIIINE=4 ; a.out

program parallel

'$ use

implicit none

integer, parameter :: n=9

integer :: 1i,rang
Sl gl OMP_GET_THREAD_NUM[Q)

do i =1, n

iteration :
iteration :
iteration :
iteration :
iteration :
iteration :
iteration :
iteration :
iteration :

0
0
1
1
2
2
3
3
0

OCONOYOIPWN -

Ve We We We Wwe Wwe Wwe Ve Vo

! $0MP ORDERED

print *,"Rang
! $0MP END ORDERED
end do

! $OMP END DO NOWAIT
! §OMP END PARALLEL

end program parallel

:",rang,"; iteration :",i

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : boucle parallele 46

3.2.3 — Cas d’une réductionl

, . , . . program parallel
1= Une réduction est une opération associa- implicit none

. SN . £ integer, parameter :: n=b
tive appliquée a une variable partagée. integer .1 i, s=0, p=1, r=1

1 $0MP PARALLEL

i [opération peut étre :

»+ arithmétique : +, —, X ; 1; n
S = 8
3 . = x 92
» logique : .AND., .OR., .EQV., P-Pp >
NEQV. ; end do
PN ! $0MP END PARALLEL
» une fonction intrinseque : MAX, MIN, rint x,"s =",s, "; p=",p, "; r =",r
TAND, I0R, IEOR. end program parallel

= 4 _
C‘hague,thread calcule un résultat par > oxport WIS
tiel indépendamment des autres. Ils se | > a.out

synchronisent ensuite pour mettre a jour
le résultat final.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘,r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




3 — Partage du travail : boucle parallele

47

‘3.2.4 — Cas de la fusion d’un nid de bouclesl

1= Dans le cas de boucles parfaitement im-

briquées et sans dépendances, il peut
étre intéressant de les fusionner pour ob-
tenir un espace d’itération plus grand.

Ainsi, on augmente la granularité de
travail de chacun des threads ce qui
peut parfois améliorer significativement
les performances.

La clause [(UB®NEINED] permet de fu-

sionner les n boucles imbriquées qui
suivent immédiatement la directive. Le
nouvel espace d’itération est alors par-
tagé entre les threads suivant le mode
de répartition choisi.

program boucle_collapse
implicit none
integer, parameter :: nl=4, n2=8, &
n3=1000000
real, dimension(:,:,:) :: A(nl1,n2,n3)

integer :: i, j, k

| $OMP PARALLEL
! $0MP DO SCHEDULE(STATIC) COLLAPSE(2)

do i=1,nl
do j=1,n2
do k=2,n3
A(i,j,k)=exp(sin(A(i,j,k-1))+ &
cos(A(i,j,k)))/2

enddo
enddo
enddo

1 $0MP END DO

! $0MP END PARALLEL
end program boucle_collapse

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



3 — Partage du travail : boucle parallele 48

i Fixécution du programme précédent avec et sans la clause [(IINNNEIE.

= Evolution du temps elapsed d’exécution (en s.) en fonction du nombre de threads
qui varie de 1 a 32.

I Sans la clause COLLAPSE

1.8
I Avec la clause COLLAPSE

—_ —_ —_
o > o
T T T
| | |

o
oo
T

Temps elapsed en s.
T
|

o
»
T

o
N
T

) u II Il I. I.
0
1 2 4 8 16 32

Nombre de threads

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail

: boucle parallele

49

‘3.2.5 — Complémentsl

Iz [Les autres clauses admises dans la directive

8] sont :

) ad

IZAINNS : pour attribuer a une variable
un statut privé;

. privatise une variable
partagée dans 1’'étendue de la construc-
tion P8 et lui assigne la derniere valeur
affectée avant ’entrée dans cette région ;

INCHIARANNY : privatise une variable
partagée dans 1’étendue de la construc-
tion 8] et permet de conserver, a la sor-
tie de cette construction, la valeur cal-
culée par le thread exécutant la derniere
itération de la boucle.

program parallel

1$ use [UUIZERE:

implicit nomne

integer, parameter :: n=9
integer :: 1, rang
real :: temp

| SOMP PARALLEL PRLVATE(rang).

do i =1, n

temp = real(i)
end do

! $0MP END DO
iVelee OMP_GET_THREAD_NUM[@)]

print *,"Rang:",rang,";temp=",temp

! §OMP END PARALLEL

end program parallel

> export [UIZRNOUENRIAADEI=4 ; a.out

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



3 — Partage du travail : boucle parallele 50

iz La directive IZVINKERAREN] est une fusion des
directives IZVINEEAN et P8] munie de 'union
de leurs clauses respectives.

1= La directive de terminaison
DT VGINEEEE  inclut une Dbarriere
globale de synchronisation et ne peut
admettre la clause NOTNEN.

program parallel
implicit none
integer, parameter ::
integer
real

! $OMP PARALLEL DO LASTPRIVATE(temp)

do i =1, n
temp = real(i)
end do

! $OMP END PARALLEL DO

end program parallel

pr i
:: temp

n=9

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020

R. Lacroix & T. Véry



3 — Partage du travail : construction WORKSHARE 51

‘3.3 — Construction WDRKSHAREI

1 Elle ne peut étre spécifiée qu’au sein d’une région parallele.

i Elle est utile pour répartir le travail essentiellement lié a certaines constructions
Fortran 95 telles que les :

»+ affectations de type tableau Fortran 90 (i.e. notation A( :, :));

»+ fonctions intrinseques portant sur des variables de type tableaux (MATMUL,
DOT_PRODUCT, SUM, PRODUCT, MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD,
PACK, UNPACK, RESHAPE, TRANSPOSE, EOSHIFT, CSHIFT, MINLOC et
MAXLOC) ;

»+ instructions ou blocs FORALL et WHERE ;
»+ fonctions dites « ELEMENTAL > définies par l'utilisateur.
= Elle n’admet que la clause NOJfI¥EH en fin de construction (IDMIVEEINGS).

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
',r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




3 — Partage du travail : construction WORKSHARE 52

i Seules les instructions ou blocs
Fortran 95 spécifiés dans 1’étendue
lexicale verront leur travail réparti
entre les threads.

iz [’unité de travail est I’élément d’un ta-
bleau. Il n’existe aucun moyen de chan-
ger ce comportement par défaut.

1 Les surcotts liés a une telle répartition
du travail peuvent parfois étre impor-
tants.

program parallel
implicit none

integer, parameter :: m=4097, n=513
integer 2001,
real, dimension(m,n) :: a, b

call random_number (b)
a(:,:) = 1.

do j=1,n
do i=1,m

b(i’J) = b(lsj) - O.

end do
end do

! $0MP END DO
! $0MP WORKSHARE

! $0MP END WORKSHARE NOWAIT
! §OMP END PARALLEL

end program parallel

WHERE(b(:,:) >= 0.) a(:,:

5

)=sqrt(b(:,:))

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V.

2.10 — Octobre 2020
R. Lacroix & T. Véry



3 — Partage du travail : construction WORKSHARE 53

program parallel
implicit none

iz La construction BEINVINARARRIOEINGS | integer, parameter  :: m=4097, n=513
est  une fusion des constructions | reals dimension(m,n) :: a, b

ITVINERSE et [TOPEENIY munie de | call random_number (b)

I'union de leurs clauses et de leurs !OP PARLEL LIOIRGe)s 150
contraintes respectives a l’exception de b(:,:) = b(:,:) - 0.5
WHERE(b(:,:) >= 0.) a(:,:)=sqrt(b(:,:))

la clause NOTNEY en fin de construction. | SOMP END PARALIEL WORKSHARE

end program parallel

ET DES RESSOURCES 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : sections paralleles 54

‘ 3.4 — Sections parallélesl

1= Une section est une portion de code exécutée par un et un seul thread.

1 Plusieurs portions de code peuvent étre définies par 'utilisateur a 'aide de la

directive F@EIol] au sein d’une construction EXeNiefE.

1= Le but est de pouvoir répartir I’exécution de plusieurs portions de code
indépendantes sur différents threads.

1 La clause NOIINEN est admise en fin de construction [HIDMSIHGEINE pour lever la
barriere de synchronisation implicite.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




3 — Partage du travail : sections paralleles 55

program parallel
implicit none

integer, parameter :: n=513, m=4097

real, dimension(m,n) :: a, b

real, dimension(m) :: coord_x
real, dimension(n) :: coord_y

real :: pas_X, pas_y
integer |

1 $OMP PARALLEL
' $OMP SECTIONS
| $OMP SECTION

call lecture_champ_initial_x(a)
1 $0MP SECTION
call lecture_champ_initial_y(b)
| $0OMP SECTION

1./real(m-1)
2./real(n-1)
coord_x(:)
coord_y(:)

o)
o))
lUJ
<
| I | I | I

! $0MP END SECTIONS NOWAIT

|
! $0MP END PARALLEL
end program parallel

SALl——Ckmwtmn%knlsECTIONSI

(/ (real(i-1)*pas_x,i=1,m) /)

subroutine lecture_champ_initial_x(x)
implicit none

integer, parameter :: n=513, m=4097
real, dimension(m,n) :: x

call random_number (x)
end subroutine lecture_champ_initial_x

subroutine lecture_champ_initial_y(y)
implicit none

integer, parameter :: n=513, m=4097
real, dimension(m,n) :: y

call random_number (y)
end subroutine lecture_champ_initial_y

(/ (real(i-1)*pas_y,i=1,n) /)

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



3 — Partage du travail : sections paralleles 56

‘3.4.2 — Complémentsl

1= Toutes les directives FX@l{El{]l doivent apparaitre dans 1’étendue lexicale de la
construction BIAGNIE].

1 Les clauses admises dans la directive sont celles que nous connaissons
déja :
L@ PRIVATER
el ' IRSTPRIVATEF
el ASTPRIVATER

ag REDUCTIONR

iz La directive |ZNVINERIAREIGENINE est une fusion des directives |ZVINERAR et
SR munie de 'union de leurs clauses respectives.

iz La directive de terminaison [HIDINZVINEEAREINGEEIE inclut une barriere globale de
synchronisation et ne peut admettre la clause INENEA.

ET DES RESSOURCES 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : exécution exclusive 57

‘3.5 — Exécution exclusivel

1= ]] arrive que 'on souhaite exclure tous les threads a ’exception d’un seul pour
exécuter certaines portions de code incluses dans une région parallele.

i Pour ce faire, OpenMP offre deux directives ERINEINY et WINSHNNA.

1= Bien que le but recherché soit le méme, le comportement induit par ces deux
constructions reste fondamentalement différent.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




3 — Partage du travail : exécution exclusive 58

program parallel

'$ use [iNNN]

implicit none

‘3.5.1 — Construction SINGLEI TouitT i Tve

! $0MP PARALLEL DEFAULT (PRIVATE)

= La construction FEIERA permet de faire a = 92290.

exécuter une portion de code par un et un I $OMP SINGLE
seul thread sans pouvoir indiquer lequel. a = -92290.

! $OMP END SINGLE
rang = [NV ()

1= En général, c’est le thread qui arrive le pre-

mier sur la construction EEEEH mais cela print *,"Rang :",rang,"; A vaut :",a
n’est pas spécifié dans la norme. | $OMP_END PARALLEL

end program parallel

1= Tous les threads n’exécutant pas la région
attendent, en fin de construction |> ifort ... -fopenm
[SIDIEEIERS, la terminaison de celui qui | > e¥Port
en a la charge, a moins d’avoir spécifié la
clause NEI/NEN.

p prog.£90
Joki=4 ; a.out

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : exécution exclusive 59

program parallel

'$ use
implicit none
integer :: rang
real ira

1 La clause supplémentaire [iId2BATNNY est

admise par la directive de terminaison a = 92290.
IDREINERT ct elle seule.
a = -92290.

i Elle permet au thread chargé d’exécuter | $OMP END SINGLE COPYPRIVATE(a)

la région BRI de diffuser aux autres SPRWRINI (1P GET_THREAD NUM[@)

threads la valeur d’une liste de variables print *,"Rang :",rang,"; A vaut :",a
. , . s e |
privées avant de sortir de cette région. ! $0MP_END PARALLEL

end program parallel

1= Les autres clauses admises par la directive

SARERY sont JERVNND, JRRSENARNNNY et | > ifort ... -fopenmp prog.f90
NOWAIT > export [UVZNIUVMVIIAVE=4 ; a.out

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




3 — Partage du travail : exécution exclusive 60

program parallel

'$ use
implicit none
integer :: rang
real 1 a

. | $OMP PARALLEL DEFAULT (PRIVATE
‘352 — COHStIUCthIl MASTERI a= 92290. ( )

! $0MP MASTER

= La construction [WEENFI permet de faire a = -92290.
, : | $OMP END MASTER
exécuter une portion de code par le seul
thread maitre. iVl OMP_GET_THREAD_NUM[@.
print *,"Rang :",rang,"; A vaut :",a

1z Cette construction n’admet aucune clause. | $OMP END PARALLEL

end program parallel

iz I n’existe aucune barriere de synchroni-

sation ni en début (LLASIIﬂi) ni en fin de |> ifort ... -fopenmp prog.£f90
construction (IADINEINAY). > export [UEMIUIMEITUE=4 ; a.out

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




3 — Partage du travail : procédures orphelines

61

‘3.6 — Procédures orphelinesl

Une procédure (fonction ou  sous-
programme) appelée dans une région
parallele est exécutée par tous les threads.

En général, il n’y a aucun intéret a cela si le
travail de la procédure n’est pas distribué.

Cela nécessite l'introduction de directives
OpenMP (pIi], FIGEINE], etc.) dans le corps
de la procédure si celle-ci est appelée dans
une région parallele.

Ces directives sont dites < orphelines > et,
par abus de langage, on parle alors de
procédures orphelines (orphaning).

Une bibliotheque scientifique multithreadée,
parallélisée avec OpenMP, sera constituée
d’un ensemble de procédures orphelines.

> 1s
> mat_vect.f90 prod_mat_vect.f90

program mat_vect
implicit nomne

integer ,parameter :: n=10256
real,dimension(n,n) :: a

real ,dimension(n) i1 X, ¥y
call random_number (a)

call random_number(x) ; y(:)=0.

! $0MP PARALLEL IF(n.gt.256)

call prod_mat_vect(a,x,y,n

! $OMP END PARALLEL

end program mat_vect

subroutine prod_mat_vect(a,x,y,n)
implicit none
integer,intent(in) :: n
real,intent (in) ,dimension(n,n)
real,intent(in) ,dimension(n)
real,intent (out) ,dimension(n)

integer :: i
I $0MP DO
doi=1, n
y(i) = SUM(a(i,:) * x(:))
end do

| §OMP END DO

end subroutine prod_mat_vect

o

<

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



3 — Partage du travail : procédures orphelines 62

1 Attention, car il existe trois contextes d’exécution selon le mode de compilation des

unités de programme appelantes et appelées :

»+ la directive EINVIVERAN de 1'unité appelante est interprétée (’exécution peut étre
Parallele) a la compilation ainsi que les directives de I'unité appelée (le travail

peut étre Distribué);

»+ la directive EININERAN de 'unité appelante est interprétée a la compilation
(’exécution peut étre Parallele) mais pas les directives contenues dans 'unité

appelée (le travail peut étre Répliqué);

»+ |a directive IFVINEEAN de ['unité appelante n’est pas interprétée a la compilation.
L’exécution est partout Séquentielle méeéme si les directives contenues dans 1'unité

appelée ont été interprétées a la compilation.

unité appelée compilée

unité appelante compilée

avec OpenMP

sans OpenMP

avec OpenMP

P+ D

P+ R

sans OpenMP

S

S

TABLE 1 — Contexte d’exécution selon le mode de compilation

L - .
INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
. EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020

R. Lacroix & T. Véry



3 — Partage du travail : récapitulatif 63

‘ 3.7 — Récapitulatif I

default shared private firstprivate lastprivate copyprivate if reduction schedule ordered copyin nowait

parallel ‘/ ‘/ \/ \/ ‘/ ‘/ ‘/

do v v v v v v
sections / / / /

workshare
single \/ / /

master

NSNS

threadprivate

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




4 — Synchronisations 64

4 — Synchronisations

La synchronisation devient nécessaire dans les situations suivantes :

@ pour s’assurer que tous les threads concurrents aient atteint un méme niveau
d’instruction dans le programme (barriere globale) ;

® pour ordonner 'exécution de tous les threads concurrents quand ceux-ci doivent
exécuter une meme portion de code affectant une ou plusieurs variables partagées
dont la cohérence en mémoire (en lecture ou en écriture) doit étre garantie
(exclusion mutuelle).

® pour synchroniser au moins deux threads concurrents parmi tous les autres
(mécanisme de verrou).

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




4 — Synchronisations 65

1= Comme nous 'avons déja indiqué, I’absence de clause signifie qu’une
barriere globale de synchronisation est implicitement appliquée en fin de
construction OpenMP. Mais il est possible d’'imposer explicitement une barriere
globale de synchronisation grace a la directive EINIRES.

= Le mécanisme d’exclusion mutuelle (une tache a la fois) se trouve, par exemple,
dans les opérations de réduction (clause EIDIEWINN) ou dans I’exécution ordonnée
d’une boucle (directive DIIMIINAAM]). Dans le méme but, ce mécanisme est aussi
mis en place dans les directives M CRITICALJ

1= Des synchronisations plus fines peuvent étre réalisées soit par la mise en place de
mécanismes de verrou (cela nécessite I’appel a des sous-programmes de la
bibliotheque OpenMP), soit par I'utilisation de la directive IIRIE.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations : barriere

66

‘4.1 — Barriérel

iz La directive EJNIAEN synchronise 1’en-
semble des threads concurrents dans une
région parallele.

1 Chacun des threads attend que tous les
autres soient arrivés a ce point de syn-
chronisation pour reprendre, ensemble,
I’exécution du programme.

01 23 4 5 Taches

_____________ Barriere

sdwa |

program parallel
implicit none

real,allocatable,dimension(:) a, b

integer ::n, i
n

=5
| $0OMP PARALLEL
! $0MP SINGLE

allocate(a(n) ,b(n))

! §0MP END SINGLE

read(9) a(l:n)

do i =1, n
b(i) = 2.*a(i)
end do

! $0MP SINGLE

deallocate(a)

! $0MP END SINGLE NOWAIT
! §OMP END PARALLEL

print *, "B vaut
end program parallel

", b(1:n)

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



4 — Synchronisations : mise a jour atomique 67

‘4.2 — Mise a jour atomiquel

program parallel
'$ use
implicit none

integer :: compteur, rang
compteur = 92290

! $0MP PARALLEL PRIVATE(rang)

OMP_GET_THREAD_NUM[@]

g
1$0MP ATOMIC

iz La directive I[NNIUE{® assure qu’une va- compteur = compteur + 1
rlable.partagee est lue et modlﬁee en print *,"Rang :",rang, &
mémoire par un seul thread a la fois. "; compteur vaut :",compteur
oo . o 1 $OMP END PARALLEL
1= Son effet est local a l'instruction qui suit | print *,"Au total, compteur vaut :", &
compteur

immeédiatement la directive.

end program parallel

Rang : 1 ; compteur vaut : 92291
Rang : 0 ; compteur vaut : 92292
Rang : 2 ; compteur vaut : 92293
Rang : 3 ; compteur vaut 92294
Au total,

compteur vaut : 92294

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




4 — Synchronisations : mise a jour atomique 68

1= [’instruction en question doit avoir 1'une
des formes suivantes :

» x=x (Op) exp;

» x=exp (op) Xx;
» x=f (x,exp) ;
»+ x=f (exp,Xx).

1= (op) représente 1'une des opérations
suivantes : +, -, x, /, .AND., .OR.,
LEQV., .NEQV..

1 f représente une des fonctions intrinseques
sulvantes : MAX, MIN, IAND, IOR, IEOR.

I exp est une expression arithmétique quel-
conque indépendante de x.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
',r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations : régions critiques 69

‘4.3 — Régions critiquesl

iz Une région critique peut etre vue comme une généralisation de la directive INNIILE,
bien que les mécanismes sous-jacents soient distincts.

1= Tous les threads exécutent cette région dans un ordre non-déterministe, mais un
seul a la fois.

1= Une région critique est définie grace a la directive [GAENIYNE et s’applique a une
portion de code terminée par [HIDMGASSIGINE.

1= Son étendue est dynamique.

1= Pour des raisons de performance, il est fortement déconseillé d’émuler une
instruction atomique par une région critique.

iz Un nom optionnel peut étre utilisé pour nommer une région critique.

i Toutes les régions critiques non explicitement nommeées sont considérées comme
ayant le méme nom non spécifié.

i Si plusieurs régions critiques ont le méme nom, elles sont considérées pour le
mécanisme d’exclusion mutuel comme une seule et unique région critique.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
',r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations

régions critiques 70

program parallel
implicit none
integer S, P

s=0
p=1

! $OMP PARALLEL

s =s +1
p=p * 2

I $0MP END CRITICAL (RC1)

! $OMP CRITICAL

s =s + 1

! §OMP END CRITICAL

! §OMP END PARALLEL

" ; p= n,p

print *, "s= ",s,

end program parallel

> ifort -fopenmp prog.£90

> export [BUIFRNUEREINNEI=4 ; a.out

s= 8 ; p= 16

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

RIS

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



4 — Synchronisations : directive FLUSH

71

‘4.4 — Directive FLUSHI

1 Elle est utile dans une région parallele
pour rafraichir la valeur d’une variable
partagée en mémoire globale.

iz Elle est d’autant plus utile que la
mémoire d’'une machine est hiérarchisée.

i Elle peut servir a mettre en place un
mécanisme de point de synchronisation
entre les threads.

w

nd

2|

program anneau
'$ use
implicit none
integer :: rang,nb_taches,synch=0

! $0MP PARALLEL PRIVATE(rang,nb_taches)

g3 OMP_GET_THREAD_NUM[@)
nb_taches=[NiZNGHINVIEGEROE (O

if (rang == 0) then ; do

| $0MP FLUSH(synch)

if (synch == nb_taches-1) exit
end do

else ; do

! $0MP FLUSH(synch)
if (synch == rang-1
end do
end if
print *,"Rang:",rang,";synch:",synch
synch=rang

I $0MP FLUSH(synch)

exit

1 $0MP END PARALLEL
end program anneau

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

RIS

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



4 — Synchronisations : directive FLUSH 72

‘4.4.1 — Exemple avec un piege facilel

program anneau2-faux
'$ use
implicit none
integer rang,nb_taches,synch=0, compteur=0
! $0MP PARALLEL PRIVATE(rang,nb_taches)
fg¥erees OMP _GET_THREAD_NUM[@)

nb_taches=[NNGHINTEEEEITOWE (O

if (rang == 0) then ; do

if (synch == nb_taches-1) exit
end do
else ; do
| $OMP FLUSH(synch)
if (synch == rang-1) exit
end do
end if
compteur=compteur+1
print *,"Rang:",rang,";synch:",synch
synch=rang

! $OMP FLUSH(synch)
! $0MP END PARALLEL

print *,"Compteur = ",compteur
end program anneau2-faux

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations : directive FLUSH

73

‘4.4.2 — Exemple avec un piege difﬁcilel

program anneau3d-faux

'$ use

implicit none

integer rang,nb_taches,synch=0, compteur=0
I SOMP_PARALLEL PRILVATE (rang,nb_taches) |

rang=[0UIZO SNV () ; nb_taches=[UliIgRGHENITERENT0E] (O

if (rang == 0) then ; do

if (synch == nb_taches-1) exit
end do
else ; do
! $0MP FLUSH(synch)
if (synch == rang-1
end do
end if
print *,"Rang:",rang,";synch:",synch

! $0MP FLUSH (compteur)

compteur=compteur+1

! $0MP FLUSH(compteur)

synch=rang

! $0MP FLUSH(synch)

exit

! §OMP END PARALLEL

print *,"Compteur = ",compteur
end program anneau3d-faux

ET DES RESSOURCES

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry



4 — Synchronisations : directive FLUSH 74

‘4.4.3 — Commentaires sur les codes précédentsl

1= Dans anneau2-faux, on n’a pas flushé la variable partagée compteur avant et apres
I’avoir incrémentée. Le résultat final peut potentiellement étre faux.

1= Dans anneau3-faux, le compilateur peut inverser les lignes :

compteur=compteur+1

! $OMP FLUSH(compteur)

et les lignes :

synch=rang

! $OMP FLUSH(synch)

libérant le thread qui suit avant que la variable compteur n’ait été incrémentée...
La encore, le résultat final pourrait potentiellement étre faux.

1 Pour résoudre ce probleme, il faut flusher les deux variables compteur et synch
juste apres l'incrémentation de la variable compteur, ainsi on impose un ordre au
compilateur.

iz Le code corrigé se trouve a la diapositive suivante.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
',r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations : directive FLUSH

75

‘4.4.4 — Code corrigél

program anneaué
'$ use
implicit none
integer :: rang,nb_taches,synch=0,compteur=0

RSy 0MP_GET_THREAD_NUM[@)

nb_taches=[IRGHENTIVIITWE] ()

if (rang == 0) then ; do

if (synch == nb_taches-1) exit
end do

else ; do

! $0OMP FLUSH(synch)

if (synch == rang-1
end do

end if

print *,"Rang:",rang,";synch:",synch

! $0MP FLUSH (compteur)

compteur=compteur+1

! 30MP_FLUSH(compteur, synch).

synch=rang

! $0MP FLUSH(synch)
! §OMP END PARALLEL
print *,"Compteur = ",compteur
end program anneau4

exit

ET DES RESSOURCES

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry



4 — Synchronisations : directive FLUSH 76

‘4.4.5 — Nid de boucles avec double dépendancel

1z Considérons le code suivant :

! Boucles avec double dependance
do j = 2, ny
do i = 2, nx
V(i,j) =(V(i,j) + V(@i-1,j) + V(i,j-1))/3
end do
end do

= C’est un probléeme classique en parallélisme (par exemple décomposition LU).

i Du fait de la dépendance arriere en i et en j, ni la boucle en i, ni la boucle en j ne
sont paralleles (i.e. chaque itération en i ou j dépend de l'itération précédente).

i Paralléliser avec la directive OpenMP IZN:INERAMENG] 1a boucle en i ou la boucle en j
donnerait des résultats faux.

1= Pourtant, il est quand méme possible d’exhiber du parallélisme de ce nid de boucles
en effectuant les calculs dans un ordre qui ne casse pas les dépendances.

i ]I existe au moins deux méthodes pour paralléliser ce nid de boucles : I'algorithme
de [’hyperplan et celui du software pipelining.

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r. I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations : directive FLUSH 77

Algorithme de ’hyperplan

1= Le principe est simple : nous al-
lons travailler sur des hyperplans
d’équation : 7 + 7 = cste qui corres- o
pondent & des diagonales de la ma- B ity e e sl sl e i
trice.

—

i Sur un hyperplan donné, les mises
a jour des éléments de cet hyper- ha:iti
plan sont indépendantes les unes des
autres, donc ces opérations peuvent
étre réalisées en parallele.

h5:i+j
h6:i+j

1= Par contre, il existe une relation de n7:i+]
dépendance entre les hyperplans ; on h8:i+]
ne peut pas mettre a jour d’éléments h9:i+j=9 /:(
de 'hyperplan H,, tant que la mise h10:i+j=10 %
a jour de ceux de I’hyperplan H,,_1
n’est pas terminée.

Dépendances

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
., ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations : directive FLUSH 78

Algorithme de I’hyperplan (2)

iz Une réécriture du code est nécessaire, avec une boucle externe sur les hyperplans
(non parallele) et une boucle parallele interne sur les éléments appartenant a
I’hyperplan qui peuvent étre mis a jour dans un ordre quelconque.

1= Le code peut se réécrire sous la forme suivante :

! boucle non //, dépendance entre les hyperplans

do h = 1,nbre_hyperplan
I calcul tab. d’indices i et j des éléments des hyperplans h
call calcul (INDI,INDJ,h)
I boucle sur le nombre d’éléments de 1l’hyperplan h

do e = 1,nbre_element_hyperplan
i = INDI(e)
j = INDJ(e)
V(1 j) =(v(i,j) + v({i-1,j) + V(i,j-1))/3 ! MAJ de 1’élément V(i, j)
enddo
enddo

1= Une fois le code réécrit, la parallélisation est tres simple et ne nécessite pas d’avoir
recours a des synchronisations fines.

= Les performances obtenues ne sont hélas pas optimales (médiocre utilisation des
caches due aux acces en diagonale, donc non contigu en mémoire).

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




4 — Synchronisations : directive FLUSH 79

Algorithme software pipelining

iz Le principe est simple : paralléliser par blocs la boucle la plus interne et jouer sur
les itérations de la boucle externe pour ne pas casser de dépendance en
synchronisant finement les threads entre eux.

1= On découpe la matrice en tranches horizontales et on attribue chaque tranche a un
thread.

iz Les dépendances imposent alors que le thread 0 doit toujours traiter une itération
de la boucle externe j qui doit étre supérieure a celle du thread 1, qui elle-méme
doit étre supérieure a celle du thread 2 et ainsi de suite...

1 Lorsqu’un thread a terminé de traiter la 7€ colonne de son domaine, il doit
vérifier avant de continuer que le thread qui le précede a lui-méme terminé de
traiter la colonne suivante (i.e. la j + 1°¢). Si ce n’est pas le cas, il faut le faire
attendre jusqu’a ce que cette condition soit remplie.

1= Pour implémenter cet algorithme, il faut constamment synchroniser les threads deux
a deux et ne libérer un thread que lorsque la condition énoncée précédemment est
réalisée.

E i INSTITUT DU DEVELOPPEMENT OpenMP — V 2.10 — Octobre 2020
.,r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




80

FLUSH

1ve

t

direc

4 — Synchronisations

Algorithme software pipelining (2)

R. Lacroix & T. Véry

OpenMP — V. 2.10 — Octobre 2020

0 peadyl
[us uoneugyr -~ -

T peatylL
[ us uonesg

200000

Dépendance

Z pealyl
(us uonesyr ~ ~

®-0
®-O

o

?»
0000000
oo o o»g
e 0000000

NN N N N S NN N N S S S S S S| S S S S S S S

—~ O
Il
| e W s |

-
|
|
|
|
|
|
|
L
|
|
[
|
|
|
|
|
i
|
|
|
|
|
[
|
I

=1

I
0 PeaJyl: T peaJyl : g peatyl
aulewoq : aulewoq : aulewo

—> > >

saouepuadaq : soouepuadag  saduepuadaq

INSTITUT DU DEVELOPPEMENT

ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

RIS




4 — Synchronisations : directive FLUSH 81

Algorithme software pipelining (3)

1 Finalement, 'implémentation de cette méthode peut se faire de la facon suivante :

myOMPRank = ...
nbOMPThrds =

call calcul_borne(iDeb,iFin)

do j= 2,n
! On bloque le thread (sauf le 0) tant que le
! précedent n’a pas fini le traitement
! de 1’itération j+1
call sync(myOMPRank, j)

I Boucle // distribuée sur les threads
do i = iDeb,iFin
I MAJ de 1’élément V(i,j)

enddo
enddo
_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r. I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




4 — Synchronisations : récapitulatif 82

/ o .
‘ 4.5 — Récapitulatif I
default shared private firstprivate lastprivate copyprivate if reduction schedule ordered copyin nowait

parallel / / / / / / /
do v v v v v v
sections / / / /

workshare
single / / /

master

NSNS

threadprivate

atomic

critical

flush

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




5 — Vectorisation SIMD : introduction 33

5 — Vectorisation SIMD
‘ 5.1 — Introductionl

== SIMD = Smgle Instruction MU.ltlple Data for (i = B; i < n; i++) l

1= Une seule instruction/opération agit en pa- z[i] = x[1] + y[i];
rallele sur plusieurs éléments.

= Avant OpenMP 4.0, les développeurs de- vioad(x) @ x[e]l | x[1] | x[2] -

vaient soit se reposer sur le savoir-faire du I,f'+ ,
compilateur, soit avoir recours a des exten- vadd S
spns\propmetalres (directives ou fonctions in- vioad(y) ‘ y[o] ‘ y[1] | y[2]
trinseques).

i OpenMP 4.0 offre la possibilité de gérer la l
vectorisation SIMD de facon portable et per-

formante en utilisant les instructions vecto- vystore(z) | z[e] | z[1] | z[2]
rielles disponibles sur "architecture cible.

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




D — Vectorisation SIMD : vectorisation SIMD d’une
boucle 34

‘5.2 — Vectorisation SIMD d’une bouclel

15 La directive BRI permet de découper .
. .. ;1 program boucle_simd
la boucle qui la suit immeédiatement en | impTlicit none

morceaux dont la taille correspond & |integer(kind=8) :: i

. , , , integer (kind=8), parameter :: n=500000
celle des registres vectoriels disponibles |real(kind=8), dimension(n) :: A, B
sur 'architecture cible. real (kind=8) :: somme

1 La directive Bl n’entraine pas la pa- ISIMD R 1
e . Y . somme
rallélisation de la boucle. do i=1,n

somme=somme+A (i) *B (i)

iz La directive BilU] peut ainsi s’utiliser |enddo
aussi bien a l'intérieur qu’a l’extérieur
d’une région parallele.

end program boucle_simd

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




5 — Vectorisation SIMD : parallélisation et vectorisation
SIMD d’une boucle 85

5.3 — Parallélisation et vectorisation SIMD d’une boucle

i [La construction DPEEEID] est une fu-
sion des directives et BBl munie de

I’union de leurs clauses respectives.

- :
Cette construction permet de partager le program boucle_simd

travail et de vectoriser le traitement des |implicit none

SN integer(kind=8) :: i
itérations de la boucle. integer (kind=8), parameter :: n=500000

real (kind=8), dimension(n) :: A, B

9 ’ . . . /
= Les paquets d’itérations sont distribués | 77 (kind=8) .. somme

aux threads en fonction du mode de
répartition choisi. Chacun vectorise le
traitement de son paquet en le subdivi- |do i=1,n . .
sant en bloc d’itérations de la taille des re- endzgmme=somme+“1) *B(1)
gistres vectoriels, blocs qui seront traités

I'un apres l'autre avec des instructions
vectorielles.

1= La directive [ENINERARNDONERD] permet

en plus de créer la région parallele.

somme=0
| $OMP PARALLEL DO SIMD REDUCTION (+:somme)

end program boucle_simd

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘,r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




5 — Vectorisation SIMD : vectorisation S1IMD de
fonctions scalaires 36

‘5.4 — Vectorisation SIMD de fonctions scalairesl

program boucle_fonction_simd
implicit none
1= Le but est de créer automatiquement iﬁﬁgg:; ,Paiameter +: n=1000
une version vectorielle de fonctions |real, dimension(n) :: A, B

. . Y real :: dist_max
scalaires. Les fonctions ainsi générées |~ °
pourront étre appelées a l'intérieur de |dist_max=0

boucles vectorisées, sans casser la vec-

! $OMP PARALLEL DO SIMD REDUCTION(max:dist_ma:
do i=1,n

torisation. dist_max=max(dist_max,dist(A(i),B(i)))
enddo

iz [,a version vectorielle de la fonction | SR INERHAREIFEE))

permettra de traiter les itérations par

print *,"Distance maximum = ",dist_max
bloc et non plus 'une apres 'autre... .
contailns
1= La directive [IXGNNIAEIND] permet de . _
, . ol 1 real function dist(x,y)
generer urne version VeCtOI‘le € €1 p us ‘ | $DMP DECLARE SIMD (diSt)
de la version scalaire de la fonction geal, int?nt(in) ) DX, ¥
, , ist=sqrt (x*x+y*
dans laquelle elle est déclarée. end fumgion disz Y

end program boucle_fonction_simd

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




6 — Les taches OpenMP : introduction 87

6 — Les taches OpenMP
‘6.1 — Introductionl

1 Le modele < fork and join > associé aux constructions de partage du travail est
limitatif.

= En particulier, il n’est pas adapté aux problématiques dynamiques (boucles while,
recherche en parallele dans un arbre, etc.) ou aux algorithmes récursifs.

i Un mouveau modele basé sur la notion de taches a été introduit avec la version
OpenMP 3.0. Il est complémentaire de celui uniquement axé sur les threads.

1 J] permet ’expression du parallélisme pour les algorithmes récursifs ou a base de
pointeurs, couramment utilisés en C/C++.

i La version OpenMP 4.0 permet de gérer des constructions de génération et de
synchronisation de taches explicites (avec ou sans dépendances).

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




6 — Les taches OpenMP : les bases du concept 88

‘6.2 — Les bases du concept I

1= Une tache OpenMP est constituée d’une instance de code exécutable et de ses
données associées. Elle est exécutée par un thread.

1= Deux types de taches existent :
»+ Les taches implicites générées par la directive [ENINERAN
»+ Les taches explicites générées par la directive

iz Plusieurs types de synchronisation sont disponibles :

»+ Pour une tache donnée, la directive INIEHINEY permet d’attendre la terminaison
de tous ses fils (de premiere génération).

»+ La directive ¥R FANDINYEICENE permet d’attendre la terminaison de

tous les descendants d’un groupe de taches.

»+ Des barrieres implicites ou explicites permettent d’attendre la terminaison de
toutes les taches explicites déja créées.

= Les variables (et leur statut associé) sont relatives a une tache, sauf pour la
directive ENEIINIZRATNNS qui est, elle, associée a la notion de thread.

-,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




6 — Les taches OpenMP : le modele d’exéecution des

taches 89
‘6.3 — Le modele d’exécution des téchesl
1 master “Task Pool”
m
‘ Parallel construct | task 1

v v b L ” .;If tEEk3

itas ' ifaskl imskl imsl.rl i o4
exec | | ex exec | |l.eXec ;fm
—— — ! —— L .

- “ Ir.

T0 |T1 |12 |13 |7 task2
k

E I Task [ 'Tuskl g

v - w w f o
7/
( Schedule and exec Tasks J

End parallel construct |

¢ l master continues

- — — 3 Mmay be deferred

< - - - - scheduling
+ implicit tasks cannot be deferred
¢ explicit tasks could be deferred
_,r-s INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
r‘ I EE ?ﬁ?ofﬁ?\ii(%%ﬁ SSCIENTIFIQUE R. Lacroix & T. Véry




6 — Les taches OpenMP : le modele d’exéecution des

taches 90
iz |,’exécution commence avec le thread master seul.

= A la rencontre d’une région parallele (EIVINARAH) :
»+ (Création d’une équipe de threads.

»+ (Création des taches implicites, une par thread, chaque thread exécutant sa tache
implicite.
= A la rencontre d’une construction de partage du travail :
»+ Distribution du travail aux threads (ou aux taches implicites)
= A la rencontre d’une construction ;
»+ (Création de taches explicites.
»+ [’exécution de ces taches explicites peut ne pas etre immédiate.
1> Exécution des taches explicites :
» A des points du code appelés task scheduling point (INEIA, IWNEATNEY, EIVIEIST),

les threads disponibles commencent 1’exécution des taches en attente.
» Un thread peut passer de ’exécution d’une tache a une autre.
= A la fin de la région parallele :
»+ Toutes les taches terminent leur exécution.

»+ Seul le thread master continue 'exécution de la partie séquentielle.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
',r S ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




6 — Les taches OpenMP : quelques exemples 91

‘ 6.4 — Quelques exemplesl

program task_print
implicit none

print *,"Un "
print *,"grand "
print *,"homme "

end program task_print

program task_print
implicit none

! $OMP PARALLEL
print *,"Un "
print *,"grand "
print *,"homme "

| $0MP END PARALLEL

end program task_print

> ifort ... —-fopenmp task_print.f90

> export [UUIZRNOUEREIINDEI=2 ; a.out

> ifort ... —-fopenmp task_print.f90

> export [BUIZRNUEREINDEI=2 ; a.out

Un
grand
homme

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



6 — Les taches OpenMP : quelques exemples

92

program task_print
implicit none

print *,"Un "
print *,"grand "
print *,"homme "

! §0MP END SINGLE
! §OMP END PARALLEL

end program task_print

> ifort ... —-fopenmp task_print.f90

> export [DUSNUENREIANEI=2 ; a.out

program task_print
implicit none

! $OMP PARALLEL
! $0MP SINGLE

print *,"Un "

! $OMP TASK

print *,"grand "

! $0MP END TASK

I $OMP TASK

print *,"homme "

! $0MP END TASK
! §0MP END SINGLE
! §OMP END PARALLEL

end program task_print

Un
grand
homme

> ifort ... -fopenmp task_print.£f90
> export [BUIFRNOIERRIREI=2 ; a.out; a.out

Un Un
grand homme
homme grand

155 Les taches peuvent étre exécutées dans n’importe quel ordre...

1= Comment terminer la phrase par < a marche sur la lune > 7

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



6 — Les taches OpenMP : quelques exemples 93

1= Si on rajoute un print juste avant la

fin de la région FRINEIN, ca ne marche
pas!

i En effet, les taches explicites ne

sont exécutables qu’aux task schedu-

ling point du code (A, IWNTUTNEN,
BARRLER I

program task_print
implicit none

! $0MP PARALLEL

! $0MP SINGLE
print *,"Un "

! $OMP TASK

print *,"grand "

! $0MP END TASK

! $OMP TASK

b

! $0MP END TASK

i)
B
[
B
ct
*
=y
(®)
=4
=
(0]

print *,"a marche sur la lune"

! $0MP END SINGLE

! $OMP END PARALLEL
end program task_print

> ifort ... -fopenmp task_print.£f90

> export [BUIZRNOUERRIREI=2 ; a.out; a.out

Un
a marche sur la lune

grand
homme

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



6 — Les taches OpenMP : quelques exemples 94

program task_print
implicit nomne
print *,"Un "

! $0MP TASK

1> La solution consiste a introduire un |print x,"grand "

task scheduling point avec la di-
rective INSIAIINEN pour exécuter les

print *,"homme "

taches explicites, puis attendre que | EEIINADIRYE

o\ : oy | $OMP TASKWAIT
ces dernieres aient terminé avant de print *,"a marche sur la lune"

continuer. I $0MP END SINGLE
| $OMP END PARALLEL

ISy Sl on veut imposer un Ordre entre end program task_print
< grand > et < homme >, il faut uti-

liser la clause A9 introduite dans | > ifort ... -fopenmp task_print.f90
0 > export [BUIZRNUENRIANDEI=2 ; a.out; a.out
penMP 4.0.

Un
grand

homme
a marche sur la lune

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




6 — Les taches OpenMP : dépendance entre taches 95

(I

IS

‘6.5 — Dépendance entre téchesl

La clause [DAZHIEHZ LM ELIABUEREMN permet de gérer des dépendances entre

des taches explicites ayant le méme pere (i.e. générées par la méme tache).

Une tache T1 qui dépend de la tache T2 ne pourra commencer a s’exécuter que
lorsque 'exécution de T2 sera terminée.

Il existe trois types de dépendance :

»+ : la tache générée sera une tache dépendante de toutes les taches
précédemment générées par le meme pere, qui référencent au moins un élément
en commun dans la liste de dépendance de type [8i§ ou EiNe]iEN.

»+ EINO1IEN et [0lUlN : la tache générée sera une tache dépendante de toutes les taches
précédemment générées par le méme pere, qui référencent au moins un élément
en commun dans la liste de dépendance de type i, S INOUTH

La liste de variables de la directive 2ga] correspond a une adresse mémoire et
peut etre un élément d’un tableau ou une section de tableau.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




6 — Les taches OpenMP : dépendance entre taches

96

157 Introduisons une dépendance entre les
taches explicites pour que la tache
T1 : print *,”grand 7 s’exécute avant
la tache T2 : print *,”homme ”.

1= On peut par exemple utiliser la clause

AP DI(EENEDY pour la tache T'1 et
AZNDIGRIBNED) pour la tache T2.

program task_print
implicit none
integer :: T1
print *,"Un "
print *,"grand "

print *,"homme "

! $0MP END TASK

! $0MP TASKWAIT
print *,"a marche sur la lune"

! §0MP END SINGLE

! §OMP END PARALLEL

end program task_print

> ifort ... —-fopenmp task_print.f90
> export [BUIZRNIEREIRADEI=2 ; a.out

Un
grand

homme
a marche sur la lune

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
. EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



6 — Les taches OpenMP : statut des variables dans les
taches 97

‘6.6 — Statut des variables dans les téchesl

i Le statut par défaut des variables est :

»+ RIS pour les taches implicites
»+ Pour les taches explicites :

w Si la variable est FlEINA#) dans la tache pere, alors elle hérite de son statut
SHAREDH
w Dans les autres cas, le statut par défaut est IRREEINZRATNND.

1= Lors de la création de la tache, on peut utiliser les clauses EJsEVIAI@ENED),

PRIVATE(list) MFIRSTPRIVATE(list) e}l

DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE) RS tNOFIGREEERIileblisetcrots
DI NRNCIRRTUNARND]E) pour spécifier explicitement le statut des variables qui
apparaissent lexicalement dans la tache.

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS

ET DES RESSOURCES . '
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




6 — Les taches OpenMP : exemple de MAJ des eléments
d’une liste chainée 98

‘6.7 — Exemple de MAJ des éléments d’une liste chainéel

1 Etant donnée une liste chalnée, com-

ment mettre a jour tous les éléments de [guproutine increment 1st_ch(debut)
cette liste en parallele... type(element), pointer :: debut, p
type element | $OMP SINGLE
integer :: valeur p=>debut _
type(element), pointer :: next do while (associated(p))
end type element
p/valeur=pJvaleur+1
subroutine increment_lst_ch(debut)
type(element), pointer :: debut, p p=>p/next
p=>debut end do
do while (associated(p))
plivaleur=pivaleur+i
p=>p/next end subroutine increment_lst_ch
end do
end subroutine increment_lst_ch

iz Le statut de la variable p a l'intérieur

= Schéma de type producteur/consom- de la tache explicite est IHBEEINZAATNN
mateur (thread qui exécute la région par défaut, ce qui est le statut voulu.

/les autres threads)

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




6 — Les taches OpenMP : exemple d’algorithme récursido

‘6.8 — Exemple d’algorithme récursit I

1 La suite de Fibonacci est définie par : £(0)=0; g;g%ggﬁ,f;gfﬁgter .. =10
f(1)=1; f(n)=f(n-1)+f(n-2)

integer :: res_fib
, o I $0MP PARALLEL

iz Le code construit un arbre binaire. La pa-

rallélisme provient du traitement des feuilles de

| $0MP SINGLE
res_fib=fib(nn)
: | ! $OMP_END SINGLE
cet arbre en parallele. '281\1\?; ggg giﬁiiim
1 Un seul thread va générer les taches, mais 'en- Ic’gifclgi;é"res—fib = ",res_fib

semble des threads vont participer a ’exécution. |recursive integer function fib(n) &

. ) result(res)
15 Attention au statut des variables dans |integer, intent(in) :: n

. . : integer :: i,
cet exemple : le statut par défaut (i.e. if (n<2) them res = n

IBREINIIATNNE) donnerait des résultats faux. Il |else
faut nécessairement que ¢ et j soient partagées
pour pouvoir récupérer le résultat dans la tache

pere... 1 $0MP TASK SHARED(j)

. . . . . j=fib(n-2)
1 Attention, la directive INEIAIINEY est aussi obliga-
toire pour s’assurer que les calculs de 7 et 7 soient

| $OMP_TASKWAIT
terminés avant de retourner le résultat. 223{%”

i Cette ; ’ £ end function fib
version n’'est pas pertormante... end program fib_rec

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




6 — Les taches OpenMP : clauses FINAL et MERGEABLE 100

‘6.9 — Clauses FINAL et MERGEABLEI

1 Dans le cas d’algorithmes récursifs de type < Divide and Conquer >, le volume du
travail de chaque tache (i.e. la granularité) diminue au fil de I'exécution. C’est la
principale raison pour laquelle le code précédent n’est pas performant.

155 Les clauses IHIJNE et WIATGANGNY sont alors tres utiles : elles permettent au
compilateur de pouvoir fusionner les nouvelles taches créées.

1> Malheureusement, ces fonctionnalités ne sont que tres rarement implémentées de
facon efficace, aussi vaut-il mieux mieux avoir recours a un < cut off > manuel dans
le code...

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




6 — Les taches OpenMP

TASKGROUP

synchronisation de type

‘6.10 — Synchronisation de type TASKGRDUPI

1= La construction permet de
définir un groupe de taches et d’at-
tendre en fin de construction que toutes
ces taches, ainsi que leurs descendantes,
aient terminé leur execution.

Dans cet exemple, nous allons particu-
lariser une tache qui va effectuer un cal-
cul en tache de fond pendant que sont
lancées en parallele plusieurs itérations
de la traversée d’un arbre binaire. A
chacune des itérations, on synchronise
les taches ayant été générées pour la tra-
versée de 'arbre et uniquement celles-
ci.

module arbre_mod

type type_arbre
type(type_arbre), pointer
end type

contains

subroutine traitement_feuille(feuille)
type(type_arbre), pointer feuille

I Traitement...

end subroutine traitement_feuille
recursive subroutine traverse_arbre(arbre)
type(type_arbre), pointer :: arbre

if (associated(arbre’fg)) then

1 $0MP TASK

call traverse_arbre(arbre’fg)
! $0MP_END TASK|

endif

if (associated(arbre’,fd)) then

1 $0MP TASK

call traverse_arbre(arbre’fd)
\!$OMP END TASK\
endif

| $0MP TASK\
call traitement_feuille(arbre)

1$0MP END TASK

end subroutine traverse_arbre
end module arbre_mod

fg, fd

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

RIS

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry

101




6 — Les taches OpenMP : synchronisation de type

TASKGROUP 102
program principal
use arbre_mod
type(type_arbre), pointer :: mon_arbre

integer, parameter :: niter=100
call init_arbre(mon_arbre)

! $OMP PARALLEL

! $OMP SINGLE

| $0MP TASK

call travail_tache_de_fond()
| $0MP END TASK

do i=1, niter
| $0MP TASKGROUP

| $OMP TASK
call traverse_arbre(mon_arbre)

! $0MP END TASK

| $OMP END TASKGROUP
enddo

! §0MP END SINGLE

! §OMP END PARALLEL
end program principal

ET DES RESSOURCES . '
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




7 — Affinités : affinité des threads 103

‘7.1 — Affinité des threadsl

i Par défaut, le systeme d’exploitation choisit le coeur d’exécution d’un thread.
Celui-ci peut changer en cours d’exécution, au prix d’une forte pénalité.

1= Pour pallier ce probleme, il est possible d’associer explicitement un thread a un
coeur pendant toute la durée de 'exécution : c’est ce que 'on appelle le binding.

= Avec les compilateurs GNU, ’association thread/coeur d’exécution se fait avec la
variable d’environnement GOMP_CPU_AFFINITY.

= Avec les compilateurs Intel, I’association thread/coeur d’exécution se fait avec la
variable d’environnement KMP_AFFINITY (cf. Intel Thread Affinity Interface).

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités : affinité des threads

104

7.1.1 — Commande cpuinfo

i La commande cpuinfo permet d’obtenir de nombreuses informations sur la
topologie du nceud d’exécution (nombre et numérotation des sockets, des coeurs
physiques et logiques, activation ou non de I’hyperthreading, etc.).

> cpuinfo <= Exemple sur un noeud SMP sans 1l’hyperthreading activé
Intel(R) Processor information utility, Version 4.1.0 Build 20120831
Copyright (C) 2005-2012 Intel Corporation. All rights reserved.

===== Processor composition =====

Processor name : Intel(R) Xeon(R) E5-4650 0

Packages(sockets) : 4 <= Nb de sockets du noeud

Cores : 32 <= Nb de coeurs physiques du noeud

Processors(CPUs) : 32 <= Nb de coeurs logiques du noeud

Cores per package : 8 <= Nb de coeurs Ehysiques par socket

Threads per core : 1 <= Nb de coeurs logiques par coeur physique,hyperthreading actif si valeur >1

===== Processor identification =====

Processor Thread Id. Core Id. Package Id.

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 0

6 0 6 0

7 0 7 0

8 0 0 1

9 0 1 1

30 0 6 3

31 0 7 3

===== Placement on packages =====

Package Id. Core Id. Processors

0 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7

1 0,1,2,3,4,5,6,7 8,9,10,11,12,13,14,15

2 0,1,2,3,4,5,6,7 16,17,18,19,20,21,22,23

3 0,1,2,3,4,5,6,7 24,25,26,27,28,29,30,31

===== (Cache sharing =====

Cache Size Processors

L1 32 KB no sharing

L2 256 KB no sharing

L3 20 MB (0,1,2,3,4,5,6,7)(8,9,10,11,12,13,14,15) (16,17,18,19,20,21,22,23) (24,25,26,27,28,29,30,31)
_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020

ET DES RESSOURCES

r. I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités : affinité des threads 105

> cpuinfo <= Exemple sur un noeud SMP avec l’hyperthreading activé

Intel(R) Processor information utility, Version 4.1.0 Build 20120831

Copyright (C) 2005-2012 Intel Corporation. All rights reserved.

===== Processor composition =====

Processor name : Intel(R) Xeon(R) E5-4650 0

Packages(sockets) : 4 <= Nb de sockets du noeud

Cores : 32 <= Nb de coeurs physiques du noeud

Processors(CPUs) : 64 <= Nb de coeurs logiques du noeud

Cores per package : 8 <= Nb de coeurs physiques par socket

Threads per core : 2 <= Nb de coeurs logiques par coeur physique,hyperthreading actif si valeur >1

===== Processor identification =====

Processor Thread Id. Core Id. Package Id.

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 0

6 0 6 0

7 0 7 0

8 0 0 1

9 0 1 1

10 0 2 1

54 1 6 2

55 1 7 2

56 1 0 3

57 1 1 3

58 1 2 3

59 1 3 3

60 1 4 3

61 1 5 3

62 1 6 3

63 1 7 3

===== Placement on packages =====

Package Id. Core Id. Processors

0 0,1,2,3,4,5,6,7 (0,32)(1,33)(2,34)(3,35)(4,36)(5,37)(6,38) (7,39)

1 0,1,2,3,4,5,6,7 (8,40)(9,41)(10,42)(11,43) (12,44) (13,45) (14,46) (15,47)

2 0,1,2,3,4,5,6,7 (16,48)(17,49) (18,50) (19,51) (20,52) (21,53) (22,54) (23,55)

3 0,1,2,3,4,5,6,7 (24,56) (25,57) (26,58) (27,59) (28,60) (29,61) (30,62) (31,63)

===== (Cache sharing =====

Cache Size Processors

L1 32 KB (0,32)(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39) (8,40) (9,41) (10,42) (11,43) (12,44) (13,45) (14,46) (15,47)
(16,48) (17,49) (18,50) (19,51) (20,52) (21,53) (22,54) (23,55) (24,56) (25,57) (26,58) (27,59) (28,60) (29,61) (30,62) (31,63)
L2 256 KB (0,32)(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39) (8,40) (9,41) (10,42) (11,43) (12,44) (13,45) (14,46) (15,47)
(16,48) (17,49) (18,50) (19,51) (20,52) (21,53) (22,54) (23,55) (24,56) (25,57) (26,58) (27,59) (28,60) (29,61) (30,62) (31,63)
L3 20 MB (0,1,2,3,4,5,6,7,32,33,34,35,36,37,38,39)(8,9,10,11,12,13,14,15,40,41,42,43,44,45,46,47)
(16,17,18,19,20,21,22,23,48,49,50,51,52,53,54,55) (24,25,26,27,28,29,30,31,56,57,58,59,60,61,62,63)

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




7 — Affinités : affinité des threads 106

Les principaux modes d’association
thread /cceur d’exécution sont les suivants :

1= mode compact : les threads de numéros
consécutifs sont bindés sur des coeurs lo-
giques ou physiques (suivant que ’hy-
perthreading est activé ou non) qui
sont les plus proches possibles les uns
des autres. Cela permet de réduire les
défauts de cache et de TLB (Transla-

tion lookaside buffer).

7.1.2 — Utilisation de la variable d’environnement KMP_AFFINITY

SO S1
CoC8 (C1C9 C4C12 C5C13
C2 C10 C3 Cl11 C6 C14 C/ C15

Exemple sur une architecture bi-sockets
quadri-coeurs, avec ’hyperthreading ac-
tivé.

L - .
INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
. EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



7 — Affinités : affinité des threads 107

> export KMP_AFFINITY=granularity=fine,scatter,verbose

SO S1

Co0C8 (C1C9 C4 C12 C5C13

iz mode Scatter : c’est le contraire du
mode compact, les threads de numéros
consécutifs sont bindés sur des coeurs
logiques ou physiques (suivant que 1’hy- C2C10 C3Cll C6C14 C7Cl5
perthreading est activé ou non) qui sont . .
les plus éloignés les uns des autres.

> export KMP_AFFINITY=proclist=[2,10,13,6],explicit,verbose

SO S1
1= mode explicit : on définit explicitement .
le binding des threads sur les coeurs lo- COC8 C1C9 C4 C12 C5C13
giques ou physiques.
C2C10 C3 C11 (ﬁCM C7C15

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r. I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités : affinité des threads 108

‘ 7.1.3 — Affinité des threads avec OpenMP 4.0'

1= OpenMP4.0 introduit la notion de places qui définissent des ensembles de coeurs
logiques ou physiques qui seront associés a I’exécution d’un thread.

15 Les places peuvent étre définies explicitement par 'intermédiaire d’une liste, ou
directement avec les mots clés suivants :

»+ threads : chaque place correspond a un coeur logique de la machine,
»+ cores : chaque place correspond a un coeur physique de la machine,
»+ sockets : chaque place correspond a un socket de la machine.
iz Exemples pour une architecture bi-sockets quadri-coeurs avec hyperthreading :
»+ [VIINNGH]—threads : 16 places correspondant a un coeur logique
»+ [VEEIWNGH]="threads(4)” : 4 places correspondant a un coeur logique

»+ [IVEEINGFRI="{0,8,1,9},{6,14,7,15}" : 2 places, la premiere sur le premier
socket, la seconde sur le deuxieme.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
', ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités

affinité des threads 109

iz [La clause IEeEEED] de la construction IEFINEENANR ou la variable d’environnement
U [ERAND] permettent de choisir 'affinité parmi les choix suivants :

»+ 2] répartition équitable des threads sur les différentes places définies

»+ [@HEIE regroupement des threads au plus pres du master thread

»+ [WEENSY les threads s’exécutent sur la meme place que celle du master

Dans
ThOO
ThO02
Thi0
Thi2

la
et
et
et
et

seconde region parallele

ThO1l s’executeront
ThO3 s’executeront
Thll s’executeront
Thl3 s’executeront

sur
sur
sur
sur

export OMP_PLACES="{0,8,1,9},{2,10,3,11},{4,12,5,13},{6,14,7,15}"
Soit 4 places p0={0,8,1,9}, p1={2,10,3,11}, p2={4,12,5,13} et p3={6,14,7,15}

! $0MP PARALLEL PROC_BIND(SPREAD) NUM_THREADS(2)

! $0MP PARALLEL PROC_BIND(CLOSE) NUM_THREADS(4)

Dans la premiere region parallele
ThO s’executera sur p0O avec une partition de place =pOpl
Thl s’executera sur p2 avec une partition de place =p2p3

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



7T — Affinités : affinité mémoire 110

‘ 7.2 — Affinité mémoirel

= Les nceuds multi-socket modernes sont fortement NUMA (Non Uniform Memory
Access), le temps d’acces a une donnée est variable suivant ’emplacement du banc
mémoire ou elle est stockée.

= La localité du stockage en mémoire des variables partagées (sur la mémoire locale
du socket qui exécute le thread ou sur la mémoire distante d’un autre socket) va
fortement influer sur les performances du code.

iz Le systeme d’exploitation essaie d’optimiser ce processus d’allocation mémoire en
privilégiant, lorsque cela est possible, I’allocation dans la mémoire locale du socket
qui est en charge de I’exécution du thread. C’est ce que 'on appelle 1’affinité
mémoire.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
., ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7T — Affinités : affinité mémoire 111

Architecture simplifiée d’'une machine fortement NUMA (quadri-sockets, octo-cceurs).

MO SO S1 M1
% Cl C2 C3 C8 C9 C10C11
C4 C5(Co C7 C12C13 C14C15
C16C17|C18 C19 C24C25C26C27
C20C21 C22C23 C28C29C30C31

S2 S3 M3

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry




7T — Affinités : affinité mémoire 112

1 Pour les tableaux, 1’allocation réelle de la mémoire se fait a ’exécution, page par
page, lors du premier acces a un élément de ce tableau.

= Suivant les caractéristiques des codes (memory bound, CPU bound, acces mémoire
aléatoires, acces mémoire suivant une dimension privilégiée, etc.), il vaut mieux
regrouper tous les threads au sein du méme socket (répartition de type compact) ou
au contraire les répartir sur les différents sockets disponibles (répartition de type
scatter).

iz En général, on essaiera de regrouper sur un meéme socket des threads qui travaillent
sur les memes données partagées.

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




7 — Affinités : stratégie < First Touch > 113

‘7.3 — Stratégie < First Touch >>|

1= Pour optimiser 'affinité mémoire dans une application, il est tres fortement
recommandé d’implémenter une stratégie de type < First Touch > : chaque thread
va initialiser la partie des données partagées sur lesquelles il va travailler
ultérieurement.

1 Si les threads sont bindés, on optimise ainsi les acces mémoire en privilégiant la
localité des acces.

iz Avantage : gains substantiels en terme de performance.
1 [nconvénient :

»+ aucun gain a escompter avec les scheduling DYEWNIENE et [€§ENED] ou avec la
directive IENEEINGS. ..

»+ aucun gain a escompter si la parallélisation utilise le concept des taches
explicites.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités : exemples d’impact sur les performancesi4

‘ 7.4 — Exemples d'impact sur les performancesl

1 Code <« Memory Bound > s’exécutant avec 4 threads sur des données privées.

program SBP

! $0OMP PARALLEL PRIVATE(A,B,C)

do i=1,n
A(i) = A(i)*B(i)+C(1)
enddo

1 $0MP END PARALLEL

end program SBP

> export [LUIERILGVENNIEINNEI=4 > export [QVIEBIIVEYY;IENNN=4
> export KMP_AFFINITY=compact > export KMP_AFFINITY=scatter
> a.out > a.out

Temps elapsed = 116 s. Temps elapsed = 49 s.

1 Pour optimiser 1'utilisation des 4 bus mémoire, il est donc préférable de binder un

thread par socket. Ici le mode scatter est 2.4 fois plus performant que le mode
compact !

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités : exemples d’impact sur les performancesis

iz Exemple sans <« First Touch > iz Exemple avec < First Touch >
: program FirstTouch
program NoFirstTouch implicit none
implicit none integer, parameter :: n = 30000
integer, parameter :: n = 30000 integer i,
integer . Pr1, ] real, dimension(n,n) :: TAB
I‘eal, dlmenSlon(n,n) :: TAB |$OMP PARALLFL
! Initialisation de TAB
AB{lon Timget o o
TAB(1:n,1:n)=1.0 01 D SCHEDULE (STATIC)
| $0MP PARALLEL engﬁg(i:n,_—,)q.o
I Calcul sur TAB I Calcul sur TAB
! $0MP_DO_SCHEDULE (STATIC) | $0MP_DO SCHEDULE (STATIC)
do J=13n do j=1,n
do i=1,n do i=1,n
TAB(i,j)=TAB(i,j)+i+] TAB(i,i)=TAB(i,j)+i+]
enddo enddo
enddo enddo
LG0STD BRI 206 T I $OMP_END PARALLEL
end program NoFirstTouch end program FirstTouch
> export [BUIRNUEREINDEI=32 ; a.out > export [UiZMIIINFEITAVE=32 ; a.out

Temps elapsed = 98.35 s. Temps elapsed = 10.22 s.

iz [utilisation de la stratégie de type < First Touch > permet un gain de 'ordre d’un
facteur 10 sur cet exemple!

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités : exemples d’impact sur les performancesis

1= Code de type < directions alternées > s’exécutant avec 4 threads sur un tableau 2D
partagé, tenant dans le cache L3 d’un socket. C’est un exemple pour lequel il n’y a
pas de localité thread d’exécution/donnée.

» Aux itérations paires, chaque thread travaille sur des colonnes du tableau
partagé.
» Aux itérations impaires, chaque thread travaille sur des lignes du tableau
partagé.
Itération impaire
T0
T1

T2

T3
TO[TLT2IT3[TO|TLTZ|... TO

T1
T2

[tération paire

1= La stratégie < First Touch > est utilisée.

1 On va comparer un binding de type compact avec un binding de type scatter.

_,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r. I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




7 — Affinités

: exemples d’impact sur les performancesir

iz Binding de type compact

TO

T1

T2

T3

TO

T1

T2

MO

M2

S0

S1

EENEN O0O00
€O C1 C2 C3 C8 €9 C10C11
C4 C5 C6 C7 C12C13 C14C15
o000 o000
O0O000 OO000
C16C17C18C19  [C24C25C26C27
C20C21C22C23  |C28C29C30C31
o000 o000

S2

S3

M1
TO
r T1

M3

= Binding de type scatter

T3

T0

T1
B
|
I

T2

T2

1

M2

S0

S1

mO0O0 mOO0O
Co C1 C2 C3 C8 €9 C10C11
C4 C5 C6 C7 C12C13 C14C15
OOo0Oono O0O0O0
EO0O0O BOO0O
C16C17C18C19  |C24C25C26C27
C20C21C22C23  |C28€29C30C31
O0O0on o000

S2

S3

M1

M3

> export [UUIZRNOUEREIANDEI=4 ; a.out

> export [BUIERNOVEREIRNE=4 ; a.out

Temps elapsed = 33.46 s. Temps elapsed = 171.52 s.

1 Dans cet exemple, le mode compact est plus de 5 fois plus performant que le mode

scatter!

RIS

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



8 — Performances 118

8 — Performances

= En général, les performances dépendent de I’architecture (processeurs, liens
d’interconnexion et mémoire) de la machine et de 'implémentation OpenMP utilisée.

i ]I existe, néanmoins, quelques regles de < bonnes performances > indépendantes de
I’architecture.

i Fin phase d’optimisation avec OpenMP, 'objectif sera de réduire le temps de
restitution du code et d’estimer son accélération par rapport a une exécution
séquentielle.

-,r- INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
ET DES RESSOURCES
r‘ I EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




8 — Performances : regles de bonnes performances 119

‘8.1 — Regles de bonnes performancesl

1 Vérifier que le mécanisme de binding des threads sur les coeurs d’exécution est bien
opérationnel.

iz Minimiser le nombre de régions paralleles dans le code.

1 Adapter le nombre de threads demandé a la taille du probleme a traiter, afin de
minimiser les surcouits de gestion des threads par le systéme.

iz Dans la mesure du possible, paralléliser la boucle la plus externe.

iz Utiliser la clause E[@ziAnBN@0\IERlIR] pour pouvoir changer dynamiquement

I’ordonnancement et la taille des paquets d’itérations dans une boucle.

1= La directive BIIYEIBRH et la clause NOINEN peuvent permettre de baisser le temps de
restitution au prix, le plus souvent, d’une synchronisation explicite.

iz La directive [NNIUIEY et la clause EAZEENNY sont plus restrictives dans leur usage
mais plus performantes que la directive [@AEE{GINH.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




8 — Performances : regles de bonnes performances 120

program parallel
13 implicit none
i Utiliser la clause pour mettre en place integer, parameter  :: n=1025
une parallélisation conditionnelle (p. ex. sur | real, dimemsion(n,n) :: a, b
. . e integer 001, ]
une architecture vectorielle, ne paralléliser

une boucle que si sa longueur est suffisament | call random_number(a)

grande).
, . , ' $OMP IF(n.gt.514)
i Bviter de paralléliser la boucle faisant do j = 2, n-
référence a la premiere dimension des ta- doi=1l,n .
b(i,j) = a(i,j+1) - a(i,j-1)
bleaux (en Fortran) car c’est celle qui fait end do

end do

! $OMP END PARALLEL DO

end program parallel

référence a des éléments contigus en mémoire.

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




8 — Performances : regles de bonnes performances 121

= Les conflits inter-taches peuvent dégrader sensiblement les performances (conflits de
banc mémoire sur une machine vectorielle ou de défauts de cache sur une machine
scalaire).

1= Sur les machines de type NUMA, il faut optimiser ’affinité mémoire en utilisant la
stratégie < First Touch >.

1 [ndépendamment de ’architecture des machines, la qualité de I'implémentation
OpenMP peut affecter assez sensiblement 1’extensibilité des boucles paralleles.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
', ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




8 — Performances

mesures du temps 122

program mat_vect

‘8.2 — Mesures du tempsl

1= OpenMP offre deux fonctions :

»+ [NEEGHEIENNIN pour mesurer le temps
de restitution en secondes

» VGG HWEENYY pour connailtre la
précision des mesures en secondes.

1= Ce que 'on mesure est le temps écoulé de-
puis un point de référence arbitraire dans le
code.

155 Cette mesure peut varier d’une exécution a
I’autre selon la charge de la machine et la
répartition des taches sur les processeurs.

end program mat_vect

1$ use [N

implicit none

integer,parameter :: n=1025
real,dimension(n,n) :: a

real ,dimension(n) 11X, ¥y
real (kind=8) t_ref, t_final
integer rang

call random_number (a)
call random_number(x) ; y(:)=0.

| $0MP PARALLEL &
! $0MP PRIVATE(rang,t_ref,t_final)

VAl OMP_GET_THREAD _NUM[@)
LR OMP_GET_WTIME[@)
call prod_mat_vect(a,x,y,n)
(b N OMP_GET_WTIME[@)
print *,"Rang :",rang, &
"; Temps :",t_final-t_ref

! §0MP END PARALLEL

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



8 — Performances : accélération 123

‘ 8.3 — Accélérationl

i Le gain en performance d’'un code parallele est

estimé par rapport a une exécution séquentielle. tp
1= Le rapport entre le temps séquentiel T et le s Nt
temps parallele 7;, sur une machine dédiée est
déja un bon indicateur sur le gain en perfor- 256S(Nt)
mance. Celui-ci définit 'accélération S(Ny) du e t5203%
code qui dépend du nombre de taches N;. oy | 1s=02% -
= Si’on considere Ty = ts+t, =1 (t5 représente I ::;32}0% } / -
le temps relatif a la partie séquentielle et ¢, ce- ¢ g /;/:_/___/,_ -------------------
lui relatif a la partie parallélisable du code), la e
loi dite de « AMDHAL » S(N;) = —1— in- =
tst N, 64 pr
dique que l'accélération S(INV;) est majorée par -
la fraction séquentielle ti du programme. 0
0 64 128 192 N 256
= = INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
Ol INEE - R. Lacroix & T. Véry




9 — Conclusion 124

i Nécessite une machine multi-processeurs a mémoire partagée.

i Mise en ceuvre relativement facile, méme dans un programme a l’origine séquentiel.
1= Permet la parallélisation progressive d’un programme séquentiel.
i Tout le potentiel des performances paralleles se trouve dans les régions paralleles.

1 Au sein de ces régions paralleles, le travail peut étre partagé grace aux boucles, aux
sections paralleles et aux taches. Mais on peut aussi singulariser un thread pour un
travail particulier.

155 Les directives orphelines permettent de développer des procédures paralleles.

1= Des synchronisations explicites globales ou point a point sont parfois nécessaires
dans les régions paralleles.

1 Un soin tout particulier doit etre apporté a la définition du statut des variables
utilisées dans une construction.

1 [’accélération mesure 'extensibilité d’un code. Elle est majorée par la fraction
séquentielle du programme et est ralentie par les surcotuts liés a la gestion des
taches.

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




10 — Annexes : parties non abordées ici 125

‘ 10.1 — Parties non abordées icil

Ce que nous n’avons pas (ou que peu) traité dans ce cours :

15 ]es procédures < verrou > pour la synchronisation point a point ;
i d’autres sous-programmes de service ;
15 ]a parallélisation mixte MPI & OpenMP ;

1 ]es apports d’OpenMP 4.0 relatifs a 1'utilisation des accélérateurs.

E i INSTITUT DU DEVELOPPEMENT OpenMP - V 2.10 — Octobre 2020
‘, ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry




10 — Annexes :

quelques pieges

126

10.2 — Quelques piégesl

1= Dans le premiere exemple ci-contre, le
statut de la variable < s > est erroné
ce qui produit un résultat indéterminé.
En effet, le statut de < s > doit étre
dans 1’étendue lexicale de la
région parallele si la clause
est spécifiée dans la directive il (ce n’est
pas la seule clause dans ce cas 1a). Ici, les
deux implémentations, IBM et NEC, four-
nissent deux résultats différents. Pour-
tant, ni 'une ni 'autre n’est en contra-
diction avec la norme alors qu’un seul
des résultats est correct.

program faux_1

real I
real, dimension(9) :: a
a(:) = 92290.

do i =1, n
s = a(i)
end do

! $0MP END DO

print *, "s=",s,"; a(9)=",a(n)

! §OMP END PARALLEL

end program faux_1

IBM SP> export [QUIZRNOUEREEINNEI=3;a.0ut
$=92290. ; a( 9 )=92290.

s=0. ; a( 9 )=92290.
s=0. ; a( 9 )=92290.

NEC SX-5> export [LUIZRNSVEREEIFNEI=3;a.0u

$=92290.
$=92290.
$=92290.

; a( 9 )=92290.
; a( 9 )=92290.
; a( 9 )=92290.

INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

RIS

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



10 — Annexes : quelques pieges 127

program faux_2
1mpllcit none
real

: : | $OMP PARALLEL DEFAULT (NONE) &
iz Dans le second exemple ci-contre, il I $OMP SHARED (s)

se produit un effet de course entre !$0MP SINGLE

A * b )2 1
les taches qu1 f.alt que llLlstructlon ,$0MP END SINGLE
< print > n’imprime pas le résultat es- ]Pl”lnt ¥,"s = ",s

compté de la variable < s > dont le sta-
tut est FIEINIAN). 11 se trouve ici que NEC et end program faux_2

IBM fournissent des résultats identiques,
mais il est possible et légitime d’obtenir
un résultat différent sur une autre plate-
forme. Une solution est de glisser, par
exemple, une directive juste

apres l'instruction < print >. NEC SX-5> export [UZMIEEIFINE=3;a.0u
s = 1.0

ET DES RESSOURCES . 3
EN INFORMATIQUE SCIENTIFIQUE R. Lacroix & T. Véry

— — INSTITUT DU DEVELOPPEMENT OpenMP — V. 2.10 — Octobre 2020
RIS




10 — Annexes :

quelques pieges

128

iz Dans le troisieme exemple ci-contre, il
peut se produire un blocage de type
< deadlock > di a une désynchronisation
entre les taches (une tache ayant du re-
tard peut sortir de la boucle, alors que
les autres taches ayant de 1’avance at-
tendent indéfiniment sur la barriere im-
plicite de la construction ENlERH). La
solution consiste a rajouter une barriere,
soit avant la construction ERREEH, soit
apres le test < if >.

program faux_3
implicit none
integer :: iteration=0

1 $0MP PARALLEL
do
| $0MP SINGLE

|

iteration = iteration + 1

1 $0MP END SINGLE

if( iteration >= 3 ) exit
end do

1| $OMP END PARALLEL

print *,"Outside // region"
end program faux_3

Intel> export [BUIEERIIGVENNIEINNNSI=3;a.0out

rien ne s’affiche a 1l’écran ...

= INSTITUT DU DEVELOPPEMENT
ET DES RESSOURCES
‘ EN INFORMATIQUE SCIENTIFIQUE

OpenMP — V. 2.10 — Octobre 2020
R. Lacroix & T. Véry



	Introduction
	Historique
	Spécifications OpenMP
	Terminologie et définitions
	Concepts généraux
	Modèle d'exécution
	Processus légers (threads)

	Fonctionnalités
	OpenMP versus MPI
	Bibliographie

	Principes
	Interface de programmation
	Syntaxe générale d'une directive
	Compilation

	Construction d'une région parallèle
	Statut des variables
	Variables privées
	La clause DEFAULT
	Variables statiques
	Allocation dynamique
	Équivalence entre variables Fortran

	Étendue d'une région parallèle
	Transmission par arguments
	Compléments

	Partage du travail
	Introduction
	Boucle parallèle
	Clause SCHEDULE
	Cas d'une exécution ordonnée
	Cas d'une réduction
	Cas de la fusion d'un nid de boucles
	Compléments

	Construction WORKSHARE
	Sections parallèles
	Construction SECTIONS
	Compléments

	Exécution exclusive
	Construction SINGLE
	Construction MASTER

	Procédures orphelines
	Récapitulatif

	Synchronisations
	Barrière
	Mise à jour atomique
	Régions critiques
	Directive FLUSH
	Exemple avec un piège facile
	Exemple avec un piège difficile
	Commentaires sur les codes précédents
	Code corrigé
	Nid de boucles avec double dépendance

	Récapitulatif

	Vectorisation SIMD
	Introduction
	Vectorisation SIMD d'une boucle
	Parallélisation et vectorisation SIMD d'une boucle
	Vectorisation SIMD de fonctions scalaires

	Les tâches OpenMP
	Introduction
	Les bases du concept
	Le modèle d'exécution des tâches
	Quelques exemples
	Dépendance entre tâches
	Statut des variables dans les tâches
	Exemple de MAJ des éléments d'une liste chaînée
	Exemple d'algorithme récursif
	Clauses FINAL et MERGEABLE
	Synchronisation de type TASKGROUP

	Affinités
	Affinité des threads
	Commande cpuinfo
	Utilisation de la variable d'environnement KMP_AFFINITY
	Affinité des threads avec OpenMP 4.0

	Affinité mémoire
	Stratégie « First Touch »
	Exemples d'impact sur les performances

	Performances
	Règles de bonnes performances
	Mesures du temps
	Accélération

	Conclusion
	Annexes
	Parties non abordées ici
	Quelques pièges


