
OpenMP 1

OpenMP
Parallélisation multitâches

pour machines à mémoire partagée

Intervenants :
Rémi Lacroix
Thibaut Véry

<prenom.nom@idris.fr>

Auteurs :
Jalel Chergui

Pierre-François Lavallée

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

Droits de reproduction 2

Copyright c© 2001-2020 CNRS/IDRIS

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

OpenMP : plan 3

1 – Introduction . 8
1.1 – Historique . 9

1.2 – Spécifications OpenMP . 10

1.3 – Terminologie et définitions . 11

1.4 – Concepts généraux . 12

1.4.1 – Modèle d’exécution . 12
1.4.2 – Processus légers (threads) . 13

1.5 – Fonctionnalités . 16
1.6 – OpenMP versus MPI . 17

1.7 – Bibliographie . 19

2 – Principes . 20

2.1 – Interface de programmation . 20

2.1.1 – Syntaxe générale d’une directive . 21

2.1.2 – Compilation . 23

2.2 – Construction d’une région parallèle . 24

2.3 – Statut des variables . 26
2.3.1 – Variables privées . 26

2.3.2 – La clause DEFAULT . 28

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

OpenMP : plan 4

2.3.3 – Variables statiques . 29

2.3.4 – Allocation dynamique . 31

2.3.5 – Équivalence entre variables Fortran 33

2.4 – Étendue d’une région parallèle . 34

2.5 – Transmission par arguments . 36

2.6 – Compléments . 37

3 – Partage du travail . 39

3.1 – Introduction . 39
3.2 – Boucle parallèle . 40

3.2.1 – Clause SCHEDULE . 41
3.2.2 – Cas d’une exécution ordonnée . 45
3.2.3 – Cas d’une réduction . 46
3.2.4 – Cas de la fusion d’un nid de boucles 47
3.2.5 – Compléments . 49

3.3 – Construction WORKSHARE . 51
3.4 – Sections parallèles . 54

3.4.1 – Construction SECTIONS . 55
3.4.2 – Compléments . 56

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

OpenMP : plan 5

3.5 – Exécution exclusive . 57

3.5.1 – Construction SINGLE . 58

3.5.2 – Construction MASTER . 60

3.6 – Procédures orphelines . 61

3.7 – Récapitulatif . 63

4 – Synchronisations . 64

4.1 – Barrière . 66

4.2 – Mise à jour atomique . 67

4.3 – Régions critiques . 69

4.4 – Directive FLUSH . 71

4.4.1 – Exemple avec un piège facile . 72

4.4.2 – Exemple avec un piège difficile . 73

4.4.3 – Commentaires sur les codes précédents 74

4.4.4 – Code corrigé . 75

4.4.5 – Nid de boucles avec double dépendance 76

4.5 – Récapitulatif . 82

5 – Vectorisation SIMD . 83

5.1 – Introduction . 83

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

OpenMP : plan 6

5.2 – Vectorisation SIMD d’une boucle . 84

5.3 – Parallélisation et vectorisation SIMD d’une boucle 85

5.4 – Vectorisation SIMD de fonctions scalaires 86

6 – Les tâches OpenMP . 87

6.1 – Introduction . 87

6.2 – Les bases du concept . 88

6.3 – Le modèle d’exécution des tâches . 89

6.4 – Quelques exemples . 91

6.5 – Dépendance entre tâches . 95

6.6 – Statut des variables dans les tâches . 97

6.7 – Exemple de MAJ des éléments d’une liste châınée 98

6.8 – Exemple d’algorithme récursif . 99

6.9 – Clauses FINAL et MERGEABLE . 100

6.10 – Synchronisation de type TASKGROUP . 101

7 – Affinités . 103

7.1 – Affinité des threads . 103

7.1.1 – Commande cpuinfo . 104

7.1.2 – Utilisation de la variable d’environnement KMP AFFINITY 106

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

OpenMP : plan 7

7.1.3 – Affinité des threads avec OpenMP 4.0 108

7.2 – Affinité mémoire . 110

7.3 – Stratégie ≪ First Touch ≫ . 113

7.4 – Exemples d’impact sur les performances 114

8 – Performances . 118

8.1 – Règles de bonnes performances . 119

8.2 – Mesures du temps . 122

8.3 – Accélération . 123

9 – Conclusion . 124

10 – Annexes . 125

10.1 – Parties non abordées ici . 125

10.2 – Quelques pièges . 126

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction 8

1 – Introduction

☞ OpenMP est un modèle de programmation parallèle qui initalement ciblait
uniquement les architectures à mémoire partagée. Aujourd’hui, il cible aussi les
accélérateurs, les systèmes embarqués et les systèmes temps réel.

☞ Les tâches de calcul peuvent accéder à un espace mémoire commun, ce qui limite la
redondance des données et simplifie les échanges d’information entre les tâches.

☞ En pratique, la parallélisation repose sur l’utilisation de processus système légers
(ou threads), on parle alors de programme multithreadé.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : historique 9

1.1 – Historique

☞ La parallélisation multithreadée existait depuis longtemps chez certains
constructeurs (ex. CRAY, NEC, IBM, ...), mais chacun avait son propre jeu de
directives.

☞ Le retour en force des machines multiprocesseurs à mémoire partagée a poussé à
définir un standard.

☞ La tentative de standardisation de PCF (Parallel Computing Forum) n’a jamais été
adoptée par les instances officielles de normalisation.

☞ Le 28 octobre 1997, une majorité importante d’industriels et de constructeurs ont
adopté OpenMP (Open Multi Processing) comme un standard dit ≪ industriel ≫.

☞ Les spécifications d’OpenMP appartiennent aujourd’hui à l’ARB (Architecture Review
Board), seul organisme chargé de son évolution.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : spécifications OpenMP 10

1.2 – Spécifications OpenMP

☞ Une version OpenMP 2 a été finalisée en novembre 2000. Elle apporte surtout des
extensions relatives à la parallélisation de certaines constructions Fortran 95.

☞ La version OpenMP 3 datant de mai 2008 introduit essentiellement le concept de
tâche.

☞ Les versions OpenMP 4 de juillet 2013 puis OpenMP 4.5 de novembre 2015 apportent
de nombreuses nouveautés, avec notamment le support des accélérateurs, des
dépendances entre les tâches, la programmation SIMD (vectorisation) et
l’optimisation du placement des threads.

☞ La version OpenMP 5 de novembre 2018 se concontre principalement sur
l’amélioration du support des accélérateurs. Elle apporte également des
améliorations sur les tâches, la gestion des mémoires non uniformes et le support
des versions récentes des langages C (11), C++ (17) et Fortran (2008).

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : terminologie et définitions 11

1.3 – Terminologie et définitions

☞ Thread : Entité d’exécution avec une mémoire locale (stack)

☞ Team : Un ensemble de un ou plusieurs threads qui participent à l’exécution d’une
région parallèle.

☞ Task/Tâche : Une instance de code exécutable et ses données associées. Elles sont
générées par les constructions PARALLEL ou TASK .

☞ Variable partagée : Une variable dont le nom permet d’accéder au même bloc de
stockage au sein d’une région parallèle entre tâches.

☞ Variable privée : Une variable dont le nom permet d’accéder à différents blocs de
stockage suivant les tâches, au sein d’une région parallèle.

☞ Host device : Partie matérielle (généralement noeud SMP) sur laquelle OpenMP
commence son exécution.

☞ Target device : Partie matérielle (carte accélératrice de type GPU ou Xeon Phi) sur
laquelle une partie de code ainsi que les données associées peuvent être transférées
puis exécutées.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : concepts généraux 12

1.4 – Concepts généraux

1.4.1 – Modèle d’exécution

☞ À son lancement, un programme OpenMP est séquentiel. Il
est constitué d’un processus unique, le thread mâıtre dont
le rang vaut 0, qui execute la tâche implicite initiale.

☞ OpenMP permet de définir des régions parallèles, c’est
à dire des portions de code destinées à être exécutées en
parallèle.

☞ Au début d’une région parallèle, de nouveaux processus
légers sont créés ainsi que de nouvelles tâches implicites,
chaque thread exécutant sa tâche implicite, en vue de se
partager le travail et de s’exécuter concurremment.

☞ Un programme OpenMP est une alternance de régions
séquentielles et de régions parallèles.

0 1 2 3

T
em

ps

Nb taches

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : concepts généraux 13

1.4.2 – Processus légers (threads)

☞ Chaque processus léger exécute sa propre
séquence d’instructions, qui correspond à sa
tâche.

☞ C’est le système d’exploitation qui choisit
l’ordre d’exécution des processus (légers ou
non) : il les affecte aux unités de calcul dispo-
nibles (coeurs des processeurs).

☞ Il n’y a aucune garantie sur l’ordre global
d’exécution des instructions d’un programme
parallèle.

Gestionnaire

Processus légers

Processeurs

30 1 2

de tâches

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : concepts généraux 14

☞ Les tâches d’un même programme partagent l’espace
mémoire de la tâche initiale (mémoire partagée) mais
disposent aussi d’un espace mémoire local : la pile (ou
stack).

☞ Il est ainsi possible de définir des variables partagées
(stockées dans la mémoire partagée) ou des variables
privées (stockées dans la pile de chacune des tâches).

Processus légers

Processus

(variables locales)
Piles

Espace variables partagées

Programme

parallèle
Région

Ensemble d’instructions

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : concepts généraux 15

☞ En mémoire partagée, il est parfois nécessaire
d’introduire une synchronisation entre les tâches
concurrentes.

☞ Une synchronisation permet par exemple d’éviter
que deux threads ne modifient dans un ordre quel-
conque la valeur d’une même variable partagée
(cas des opérations de réduction).

end do
S = S + a*b

do i = ...

b = 3.
a = 2.

S=0.

S = ?

S = 6 S=12

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : fonctionnalités 16

1.5 – Fonctionnalités

OpenMP facilite l’écriture d’algorithmes parallèles en mémoire partagée en proposant des
mécanismes pour :

☞ partager le travail entre les tâches. Il est par exemple possible de répartir les
itérations d’une boucle entre les tâches. Lorsque la boucle agit sur des tableaux,
cela permet de distribuer simplement le traitement des données entre les processus
légers.

☞ partager ou privatiser les variables.

☞ synchroniser les threads.

Depuis la version 3.0, OpenMP permet aussi d’exprimer le parallélisme sous la forme d’un
ensemble de tâches explicites à réaliser. OpenMP-4.0 permet de décharger une partie du
travail sur un accélérateur.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : openMP versus MPI 17

1.6 – OpenMP versus MPI

Ce sont des modèles de programmation adaptées à deux architectures parallèles
différentes :

☞ MPI est un modèle de programmation à mémoire distribuée. La communication
entre les processus est explicite et sa gestion est à la charge de l’utilisateur.

☞ OpenMP est un modèle de programmation à mémoire partagée. Chaque thread a une
vision globale de la mémoire.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : openMP versus MPI 18

☞ Sur une grappe de machines
indépendantes (nœuds) multiproces-
seurs à mémoire partagée, la mise en
œuvre d’une parallélisation à deux ni-
veaux (MPI et OpenMP) dans un même
programme peut être un atout majeur
pour les performances parallèles ou
l’empreinte mémoire du code.

Noeud 2

Noeud 3

Processus MPI

MPI + OpenMP
Programme

Noeud 0

Taches OpenMP

Noeud 1

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

1 – Introduction : bibliographie 19

1.7 – Bibliographie

☞ Premier livre sur OpenMP : R. Chandra & al., Parallel Programming in OpenMP,
éd. Morgan Kaufmann Publishers, oct. 2000.

☞ Livre plus récent sur OpenMP : B. Chapman & al., Using OpenMP, MIT Press, 2008.

☞ Spécifications du standard OpenMP : http://www.openmp.org/

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

http://www.openmp.org/

2 – Principes : interface de programmation 20

2 – Principes

2.1 – Interface de programmation

➊ Directives et clauses de compilation : elles servent
à définir le partage du travail, la synchronisation
et le statut privé ou partagé des données ;

➋ Fonctions et sous-programmes : ils font partie
d’une bibliothèque chargée à l’édition de liens du
programme.

➌ Variables d’environnement : une fois positionnées,
leurs valeurs sont prises en compte à l’exécution.

Programme

d’environnement
Variables

Directives

Bibliothèque

Compilation

Edition de liens

Exécution

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : interface de programmation 21

2.1.1 – Syntaxe générale d’une directive

☞ Une directive OpenMP possède la forme générale suivante :

sentinelle directive [clause[clause]...]

☞ Les directives OpenMP sont considérées par le compilateur comme des lignes de
commentaires à moins de spécifier une option adéquate de compilation pour qu’elles
soient interprétées.

☞ La sentinelle est une châıne de caractères dont la valeur dépend du langage utilisé.

☞ Il existe un module Fortran 95 OMP LIB et un fichier d’inclusion C/C++ omp.h qui
définissent le prototype de toutes les fonctions OpenMP. Il est indispensable de les
inclure dans toute unité de programme OpenMP utilisant ces fonctions.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : interface de programmation 22

☞ Pour Fortran, en format libre :

!$ use OMP_LIB
...
!$OMP PARALLEL PRIVATE(a,b) &

!$OMP FIRSTPRIVATE(c,d,e)
...

! $OMP END PARALLEL ! C’est un commentaire

☞ Pour Fortran, en format fixe :

!$ use OMP_LIB
...

C$OMP PARALLEL PRIVATE(a,b)
C$OMP1 FIRSTPRIVATE(c,d,e)

...
C$OMP END PARALLEL

☞ Pour C et C++ :

#include <omp.h>
...
#pragma omp parallel private(a,b) firstprivate(c,d,e)
{ ... }

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : interface de programmation 23

2.1.2 – Compilation

Voici les options de compilation permettant d’activer l’interprétation des directives
OpenMP par certains compilateurs :

☞ Compilateur GNU : -fopenmp

gfortran -fopenmp prog.f90 # Compilateur Fortran

☞ Compilateur Intel : -fopenmp ou -qopenmp

ifort -fopenmp prog.f90 # Compilateur Fortran

☞ Compilateur IBM : -qsmp=omp

xlf_r -qsuffix=f=f90 -qnosave -qsmp=omp prog.f90 # Compilateur Fortran

Exemple d’exécution :

export OMP_NUM_THREADS=4 # Nombre de threads souhaité
./a.out # Exécution

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : construction d’une région parallèle 24

2.2 – Construction d’une région parallèle

☞ Un programme OpenMP est une alternance de
régions séquentielles et parallèles (modèle ≪ fork
and join ≫)

☞ À l’entrée d’une région parallèle, le thread mâıtre
(celui de rang 0) crée/active (fork) des proces-
sus ≪ fils ≫ (processus légers) et autant de tâches
implicites. Ces processus fils exécutent leur tâche
implicite puis disparaissent ou s’assoupissent en
fin de région parallèle (join).

☞ En fin de région parallèle, l’exécution rede-
vient séquentielle avec uniquement l’exécution du
thread mâıtre.

fork

join

région

parallèle

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : construction d’une région parallèle 25

☞ Au sein d’une même région parallèle, tous les
threads exécutent chacun une tâche implicite
différente, mais composée du même code.

☞ Par défaut, les variables sont partagées.

☞ Il existe une barrière implicite de synchroni-
sation en fin de région parallèle.

program parallel
!$ use OMP_LIB
implicit none
real :: a
logical :: p

a = 92290; p=.false.
!$OMP PARALLEL
!$ p = OMP_IN_PARALLEL()
print *,"A vaut : ",a
!$OMP END PARALLEL
print*,"Parallel ?:", p

end program parallel

> ifort -fopenmp prog.f90
> export OMP_NUM_THREADS=4
> a.out

A vaut : 92290
A vaut : 92290
A vaut : 92290
A vaut : 92290
Parallele ? : T

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 26

2.3 – Statut des variables

2.3.1 – Variables privées

☞ La clause PRIVATE permet de changer le sta-
tut d’une variable.

☞ Si une variable possède un statut privé, elle
est allouée dans la pile de chaque tâche.

☞ Les variables privées ne sont pas initialisées à
l’entrée d’une région parallèle.

a=290 a=290 a=290 a=290

a=92000

program parallel
!$ use OMP_LIB
implicit none
real :: a
integer :: rang

a = 92000
! $OMP PARALLEL PRIVATE(rang,a)
!$ rang = OMP_GET_THREAD_NUM()
a = a + 290
print *,"Rang : ",rang, &

"; A vaut : ",a
!$OMP END PARALLEL
print*,"Hors region, A vaut :",a

end program parallel

Rang : 1 ; A vaut : 290
Rang : 2 ; A vaut : 290
Rang : 0 ; A vaut : 290
Rang : 3 ; A vaut : 290
Hors region, A vaut : 92000

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 27

☞ Cependant, grâce à la clause FIRSTPRIVATE ,
il est possible de forcer l’initialisation d’une
variable privée à la dernière valeur qu’elle
avait avant l’entrée dans la région parallèle.

a
92290

=
a
=

92290 92290 92290
==

a a

a=92000

☞ En sortie de région parallèle, les variables
privées sont perdues.

program parallel
implicit none
real :: a

a = 92000.
! $OMP PARALLEL FIRSTPRIVATE(a)

a = a + 290
print *,"A vaut : ",a

!$OMP END PARALLEL
print*,"Hors region, A vaut :",a

end program parallel

> ifort -fopenmp prog.f90
> export OMP_NUM_THREADS=4
> a.out

A vaut : 92290
A vaut : 92290
A vaut : 92290
A vaut : 92290
Hors region, A vaut : 92000

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 28

2.3.2 – La clause DEFAULT

☞ Par défaut, les variables sont partagées mais
pour éviter les erreurs, il est recommandé de
définir le statut de chaque variable explicite-
ment.

☞ La clause DEFAULT(NONE) permet d’obliger le
programmeur à expliciter le statut de chaque
variable.

☞ En Fortran, il est aussi possible de changer le
statut implicite des variables en utilisant par
exemple la clause DEFAULT(PRIVATE) .

program parallel
!$ use OMP_LIB
implicit none
logical :: p

p=.false.
! $OMP PARALLEL DEFAULT(NONE) &

!$OMP SHARED(p)
!$ p = OMP_IN_PARALLEL()
!$OMP END PARALLEL
print*,"Parallel ?:", p

end program parallel

Parallele ? : T

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 29

2.3.3 – Variables statiques

☞ Une variable statique est une variable
conservée pendant toute la durée de
vie d’un programme.

➳ En Fortran, c’est le cas des va-
riables apparaissant en COMMON ou
dans un MODULE ou déclarées SAVE
ou initialisées à la déclaration (ins-
truction DATA ou symbole =).

➳ En C/C++, ce sont les variables
déclarées avec le mot clé static.

☞ Dans une région parallèle OpenMP, une
variable statique est par défaut une
variable partagée.

module var_stat
real :: c

end module var_stat

program parallel
use var_stat
implicit none
real :: a
common /bidon/a
!$OMP PARALLEL
call sub()

!$OMP END PARALLEL
end program parallel
subroutine sub()

use var_stat
use OMP_LIB
implicit none
real :: a, b=10.
integer :: rang
common /bidon/a
rang = OMP_GET_THREAD_NUM()
a=rang;b=rang;c=rang
!$OMP BARRIER
print *,"valeurs de A, B et C : ",a,b,c

end subroutine sub

> ifort -fopenmp var_stat.f90 prog.f90
> export OMP_NUM_THREADS=2;a.out

Un résultat possible est :

valeurs de A, B et C : 0.0 1.0 1.0
valeurs de A, B et C : 0.0 1.0 1.0

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 30

☞ L’utilisation de la directive THREADPRIVATE

permet de privatiser une instance statique (pour
les threads et non les tâches...) et faire que celle-
ci soit persistante d’une région parallèle à une
autre.

☞ Si, en outre, la clause COPYIN est spécifiée alors
la valeur des instances statiques est transmise à
tous les threads.

bidon
a=92000

b=
92

29
0

bidon

b=
92

29
1

bidon

b=
92

29
2

bidon

program parallel
!$ use OMP_LIB
implicit none
integer :: a
common/bidon/a
!$OMP THREADPRIVATE(/bidon/)
a = 92000
! $OMP PARALLEL COPYIN(/bidon/)
a = a + OMP_GET_THREAD_NUM()
call sub()

!$OMP END PARALLEL
print*,"Hors region, A vaut:",a

end program parallel
subroutine sub()
implicit none
integer :: a, b
common/bidon/a
!$OMP THREADPRIVATE(/bidon/)
b = a + 290
print *,"B vaut : ",b

end subroutine sub

B vaut : 92290
B vaut : 92291
B vaut : 92292
B vaut : 92293
Hors region, A vaut : 92000

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 31

2.3.4 – Allocation dynamique

L’opération d’allocation/désallocation dynamique de mémoire peut être effectuée à
l’intérieur d’une région parallèle.

☞ Si l’opération porte sur une variable privée, celle-ci sera locale à chaque tâche.

☞ Si l’opération porte sur une variable partagée, il est alors plus prudent que seul un
thread (p. ex. le thread mâıtre) se charge de cette opération. Pour des raisons de
localité des données, il est recommandé d’initialiser les variables à l’intérieur de la
région parallèle (≪ first touch ≫).

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 32

program parallel
!$ use OMP_LIB
implicit none
integer :: n,debut,fin,rang,nb_taches,i
real, allocatable, dimension(:) :: a

n=1024
allocate(a(n))
! $OMP PARALLEL DEFAULT(NONE) PRIVATE(debut,fin,nb_taches,rang,i) &

! $OMP SHARED(a,n) IF(n .gt. 512)
nb_taches=OMP_GET_NUM_THREADS() ; rang=OMP_GET_THREAD_NUM()
debut=1+(rang*n)/nb_taches
fin=((rang+1)*n)/nb_taches
do i = debut, fin

a(i) = 92290. + real(i)
end do
print *,"Rang : ",rang,"; A(",debut,"),...,A(",fin,") : ",a(debut),",...,",a(fin)

!$OMP END PARALLEL
deallocate(a)

end program parallel

> export OMP_NUM_THREADS=4;a.out

Rang : 3 ; A(769), ... , A(1024) : 93059., ... , 93314.
Rang : 2 ; A(513), ... , A(768) : 92803., ... , 93058.
Rang : 1 ; A(257), ... , A(512) : 92547., ... , 92802.
Rang : 0 ; A(1), ... , A(256) : 92291., ... , 92546.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : statut des variables 33

2.3.5 – Équivalence entre variables Fortran

☞ Ne mettre en équivalence que des variables de
même statut.

☞ Dans le cas contraire, le résultat est
indéterminé.

☞ Ces remarques restent vraies dans le cas d’une
association par POINTER.

program parallel
implicit none
real :: a, b
equivalence(a,b)

a = 92290.
!$OMP PARALLEL PRIVATE(b) &

!$OMP SHARED(a)
print *,"B vaut : ",b

!$OMP END PARALLEL
end program parallel

> ifort -fopenmp prog.f90
> export OMP_NUM_THREADS=4;a.out

B vaut : -0.3811332074E+30
B vaut : 0.0000000000E+00
B vaut : -0.3811332074E+30
B vaut : 0.0000000000E+00

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : étendue d’une région parallèle 34

2.4 – Étendue d’une région parallèle

☞ L’étendue d’une construction OpenMP représente
le champ d’influence de celle-ci dans le pro-
gramme.

☞ L’influence (ou la portée) d’une région parallèle
s’étend aussi bien au code contenu lexicalement
dans cette région (étendue statique), qu’au code
des sous-programmes appelés. L’union des deux
représente ≪ l’étendue dynamique ≫.

program parallel
implicit none
!$OMP PARALLEL

call sub()
!$OMP END PARALLEL

end program parallel
subroutine sub()
!$ use OMP_LIB
implicit none
logical :: p
!$ p = OMP_IN_PARALLEL()
!$ print *,"Parallele ?:", p

end subroutine sub

> ifort -fopenmp prog.f90
> export OMP_NUM_THREADS=4;a.out

Parallele ? : T
Parallele ? : T
Parallele ? : T
Parallele ? : T

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : étendue d’une région parallèle 35

☞ Dans un sous-programme appelé dans une
région parallèle, les variables locales et ta-
bleaux automatiques sont implicitement privés
à chaque tâche (ils sont définis dans la pile).

☞ En C/C++, les variables déclarées à l’intérieur
d’une région parallèle sont privées.

program parallel
implicit none
! $OMP PARALLEL DEFAULT(SHARED)

call sub()
!$OMP END PARALLEL

end program parallel
subroutine sub()
!$ use OMP_LIB
implicit none
integer :: a
a = 92290
a = a + OMP_GET_THREAD_NUM()
print *,"A vaut : ",a

end subroutine sub

> ifort -fopenmp prog.f90
> export OMP_NUM_THREADS=4;a.out

A vaut : 92290
A vaut : 92291
A vaut : 92292
A vaut : 92293

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : transmission par arguments 36

2.5 – Transmission par arguments

☞ Dans une procédure, toutes les variables
transmises par argument (dummy parameters)
héritent du statut défini dans l’étendue lexicale
(statique) de la région.

program parallel
implicit none
integer :: a, b

a = 92000
! $OMP PARALLEL SHARED(a) PRIVATE(b)

call sub(a, b)
print *,"B vaut : ",b

!$OMP END PARALLEL
end program parallel

subroutine sub(x, y)
!$ use OMP_LIB
implicit none
integer :: x, y

y = x + OMP_GET_THREAD_NUM()
end subroutine sub

> ifort -fopenmp prog.f90
> export OMP_NUM_THREADS=4
> a.out

B vaut : 92002
B vaut : 92003
B vaut : 92001
B vaut : 92000

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : compléments 37

2.6 – Compléments

☞ La construction d’une région parallèle admet
deux autres clauses :

➳ REDUCTION : pour les opérations de
réduction avec synchronisation implicite
entre les threads ;

➳ NUM THREADS : Elle permet de spécifier le
nombre de threads souhaité à l’entrée
d’une région parallèle de la même
manière que le ferait le sous-programme
OMP SET NUM THREADS .

☞ D’une région parallèle à l’autre, le nombre de
threads concurrents peut être variable si on le
souhaite.

program parallel
implicit none

!$OMP PARALLEL NUM_THREADS(2)
print *,"Bonjour !"

!$OMP END PARALLEL

!$OMP PARALLEL NUM_THREADS(3)
print *,"Coucou !"

!$OMP END PARALLEL
end program parallel

> ifort -fopenmp prog.f90
> export OMP_NUM_THREADS=4
> ./a.out

Bonjour !
Bonjour !
Coucou !
Coucou !
Coucou !

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

2 – Principes : compléments 38

☞ Il est possible d’imbriquer (nesting) des
régions parallèles, mais cela n’a d’effet
que si ce mode a été activé à l’appel
du sous-programme OMP SET NESTED ou en
positionnant la variable d’environnement
OMP NESTED à la valeur true.

program parallel
!$ use OMP_LIB
implicit none
integer :: rang

! $OMP PARALLEL NUM_THREADS(3) &
!$OMP PRIVATE(rang)

rang=OMP_GET_THREAD_NUM()
print *,"Mon rang dans region 1 :",rang
! $OMP PARALLEL NUM_THREADS(2) &

!$OMP PRIVATE(rang)
rang=OMP_GET_THREAD_NUM()
print *," Mon rang dans region 2 :",rang

!$OMP END PARALLEL
!$OMP END PARALLEL

end program parallel

> ifort ... -fopenmp prog.f90
> export OMP_NESTED=true; ./a.out

Mon rang dans region 1 : 0
Mon rang dans region 2 : 1
Mon rang dans region 2 : 0

Mon rang dans region 1 : 2
Mon rang dans region 2 : 1
Mon rang dans region 2 : 0

Mon rang dans region 1 : 1
Mon rang dans region 2 : 0
Mon rang dans region 2 : 1

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : introduction 39

3 – Partage du travail

3.1 – Introduction

☞ En principe, la création d’une région parallèle et l’utilisation de quelques fonctions
OpenMP suffisent à elles seules pour paralléliser une portion de code. Mais il est,
dans ce cas, à la charge du programmeur de répartir aussi bien le travail que les
données au sein d’une région parallèle.

☞ Heureusement, des directives permettent de faciliter cette répartition (DO ,
WORKSHARE , SECTIONS)

☞ Par ailleurs, il est possible de faire exécuter des portions de code situées dans une
région parallèle à un seul thread (SINGLE , MASTER).

☞ La synchronisation entre les threads sera abordée dans le chapitre suivant.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 40

3.2 – Boucle parallèle

☞ Une boucle est parallèle si toutes ses itérations sont indépendantes les unes des
autres.

☞ C’est un parallélisme par répartition des itérations d’une boucle.

☞ La boucle parallélisée est celle qui suit immédiatement la directive DO .

☞ Les boucles ≪ infinies ≫ et do while ne sont pas parallélisables avec cette directive,
elles le sont via les tâches explicites.

☞ Le mode de répartition des itérations peut être spécifié dans la clause SCHEDULE .

☞ Le choix du mode de répartition permet de mieux contrôler l’équilibrage de la
charge de travail entre les threads.

☞ Les indices de boucles sont par défaut des variables entières privées, dont il n’est
pas indispensable de spécifier le statut.

☞ Par défaut, une synchronisation globale est effectuée en fin de construction END DO

à moins d’avoir spécifié la clause NOWAIT .

☞ Il est possible d’introduire autant de constructions DO (les unes après les autres)
qu’il est souhaité dans une région parallèle.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 41

3.2.1 – Clause SCHEDULE

program parallel
!$ use OMP_LIB
implicit none
integer, parameter :: n=4096
real, dimension(n) :: a
integer :: i, i_min, i_max, rang, nb_taches
! $OMP PARALLEL PRIVATE(rang,nb_taches,i_min,i_max)
rang=OMP_GET_THREAD_NUM() ; nb_taches=OMP_GET_NUM_THREADS() ; i_min=n ; i_max=0
! $OMP DO SCHEDULE(STATIC,n/nb_taches)
do i = 1, n

a(i) = 92290. + real(i) ; i_min=min(i_min,i) ; i_max=max(i_max,i)
end do

!$OMP END DO NOWAIT
print *,"Rang : ",rang,"; i_min :",i_min,"; i_max :",i_max

!$OMP END PARALLEL
end program parallel

> ifort ... -fopenmp prog.f90 ; export OMP_NUM_THREADS=4 ; a.out

Rang : 1 ; i_min : 1025 ; i_max : 2048
Rang : 3 ; i_min : 3073 ; i_max : 4096
Rang : 0 ; i_min : 1 ; i_max : 1024
Rang : 2 ; i_min : 2049 ; i_max : 3072

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 42

☞ La répartition STATIC consiste à divi-
ser les itérations en paquets d’une taille
donnée (sauf peut-être pour le dernier). Il
est ensuite attribué, d’une façon cyclique
à chacun des threads, un ensemble de pa-
quets suivant l’ordre des threads jusqu’à
concurrence du nombre total de paquets.

0 1 2 3 4 5 6 7 8

Répartition statique

Charge de travail

Paquets

0 4 1 5 2 6 3 78

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 43

☞ Nous aurions pu différer à l’exécution
le choix du mode de répartition des
itérations à l’aide de la variable d’envi-
ronnement OMP SCHEDULE , ce qui peut
parfois engendrer une dégradation des
performances.

☞ Le choix du mode de répartition des
itérations d’une boucle peut être un
atout majeur pour l’équilibrage de la
charge de travail sur une machine dont
les processeurs ne sont pas dédiés.

☞ Attention : pour des raisons de per-
formances vectorielles ou scalaires,
éviter de paralléliser les boucles faisant
référence à la première dimension d’un
tableau multi-dimensionnel.

program parallel
!$ use OMP_LIB
implicit none
integer, parameter :: n=4096
real, dimension(n) :: a
integer :: i, i_min, i_max
! $OMP PARALLEL DEFAULT(PRIVATE) SHARED(a)
i_min=n ; i_max=0
!$OMP DO SCHEDULE(RUNTIME)

do i = 1, n
a(i) = 92290. + real(i)
i_min=min(i_min,i)
i_max=max(i_max,i)

end do
!$OMP END DO
print*,"Rang:",OMP_GET_THREAD_NUM(), &

";i_min:",i_min,";i_max:",i_max
!$OMP END PARALLEL

end program parallel

> export OMP_NUM_THREADS=2
> export OMP_SCHEDULE="STATIC,1024"
> a.out

Rang: 0 ; i_min: 1 ; i_max: 3072
Rang: 1 ; i_min: 1025 ; i_max: 4096

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 44

☞ En plus du mode STATIC , il existe trois autres
façons de répartir les itérations d’une boucle :

➳ DYNAMIC : les itérations sont divisées
en paquets de taille donnée. Sitôt qu’un
thread épuise les itérations de son paquet,
un autre paquet lui est attribué ;

➳ GUIDED : les itérations sont divisées en
paquets dont la taille décrôıt exponentiel-
lement. Tous les paquets ont une taille
supérieure ou égale à une valeur donnée
à l’exception du dernier dont la taille peut
être inférieure. Sitôt qu’un thread finit les
itérations de son paquet, un autre paquet
d’itérations lui est attribué.

➳ AUTO : le choix de la répartition des
itérations de la boucle est délégué au com-
pilateur ou au système à l’exécution (i.e.
≪ runtime ≫).

> export OMP_SCHEDULE="DYNAMIC,480"
> export OMP_NUM_THREADS=4 ; a.out

0 1 2 3 4 6 7 8

3 4
5

6

2

Paquets

Répartition dynamique

0 1

? ?

5

Charge de travail
dans le temps

> export OMP_SCHEDULE="GUIDED,256"
> export OMP_NUM_THREADS=4 ; a.out

10 2 3 4 5

? ?

01 23

Paquets

Répartition guidée

Charge de travail
dans le temps

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 45

3.2.2 – Cas d’une exécution ordonnée

☞ Il est parfois utile (cas de débogage)
d’exécuter une boucle d’une façon ordonnée.

☞ L’ordre des itérations sera alors identique
à celui correspondant à une exécution
séquentielle.

program parallel
!$ use OMP_LIB
implicit none
integer, parameter :: n=9
integer :: i,rang
! $OMP PARALLEL DEFAULT(PRIVATE)
rang = OMP_GET_THREAD_NUM()
! $OMP DO SCHEDULE(RUNTIME) ORDERED
do i = 1, n
!$OMP ORDERED
print *,"Rang :",rang,"; iteration :",i

!$OMP END ORDERED
end do

!$OMP END DO NOWAIT
!$OMP END PARALLEL

end program parallel

> export OMP_SCHEDULE="STATIC,2"
> export OMP_NUM_THREADS=4 ; a.out

Rang : 0 ; iteration : 1
Rang : 0 ; iteration : 2
Rang : 1 ; iteration : 3
Rang : 1 ; iteration : 4
Rang : 2 ; iteration : 5
Rang : 2 ; iteration : 6
Rang : 3 ; iteration : 7
Rang : 3 ; iteration : 8
Rang : 0 ; iteration : 9

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 46

3.2.3 – Cas d’une réduction

☞ Une réduction est une opération associa-
tive appliquée à une variable partagée.

☞ L’opération peut être :

➳ arithmétique : +, –, × ;

➳ logique : .AND., .OR., .EQV.,
.NEQV. ;

➳ une fonction intrinsèque : MAX, MIN,
IAND, IOR, IEOR.

☞ Chaque thread calcule un résultat par-
tiel indépendamment des autres. Ils se
synchronisent ensuite pour mettre à jour
le résultat final.

program parallel
implicit none
integer, parameter :: n=5
integer :: i, s=0, p=1, r=1
!$OMP PARALLEL
! $OMP DO REDUCTION(+:s) REDUCTION(*:p,r)

do i = 1, n
s = s + 1
p = p * 2
r = r * 3

end do
!$OMP END PARALLEL
print *,"s =",s, "; p =",p, "; r =",r

end program parallel

> export OMP_NUM_THREADS=4
> a.out

s = 5 ; p = 32 ; r = 243

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 47

3.2.4 – Cas de la fusion d’un nid de boucles

☞ Dans le cas de boucles parfaitement im-
briquées et sans dépendances, il peut
être intéressant de les fusionner pour ob-
tenir un espace d’itération plus grand.

☞ Ainsi, on augmente la granularité de
travail de chacun des threads ce qui
peut parfois améliorer significativement
les performances.

☞ La clause COLLAPSE(n) permet de fu-
sionner les n boucles imbriquées qui
suivent immédiatement la directive. Le
nouvel espace d’itération est alors par-
tagé entre les threads suivant le mode
de répartition choisi.

program boucle_collapse
implicit none
integer, parameter :: n1=4, n2=8, &

n3=1000000
real, dimension(:,:,:) :: A(n1,n2,n3)
integer :: i, j, k

...
!$OMP PARALLEL
! $OMP DO SCHEDULE(STATIC) COLLAPSE(2)
do i=1,n1

do j=1,n2
do k=2,n3

A(i,j,k)=exp(sin(A(i,j,k-1))+ &
cos(A(i,j,k)))/2

enddo
enddo

enddo
!$OMP END DO
!$OMP END PARALLEL
end program boucle_collapse

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 48

☞ Exécution du programme précédent avec et sans la clause COLLAPSE .

☞ Évolution du temps elapsed d’exécution (en s.) en fonction du nombre de threads
qui varie de 1 à 32.

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Nombre de threads

T
e
m

p
s
 e

la
p
s
e
d
 e

n
 s

.

Sans la clause COLLAPSE

Avec la clause COLLAPSE

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 49

3.2.5 – Compléments

☞ Les autres clauses admises dans la directive
DO sont :

➳ PRIVATE : pour attribuer à une variable
un statut privé ;

➳ FIRSTPRIVATE : privatise une variable
partagée dans l’étendue de la construc-
tion DO et lui assigne la dernière valeur
affectée avant l’entrée dans cette région ;

➳ LASTPRIVATE : privatise une variable
partagée dans l’étendue de la construc-
tion DO et permet de conserver, à la sor-
tie de cette construction, la valeur cal-
culée par le thread exécutant la dernière
itération de la boucle.

program parallel
!$ use OMP_LIB
implicit none
integer, parameter :: n=9
integer :: i, rang
real :: temp

!$OMP PARALLEL PRIVATE(rang)
!$OMP DO LASTPRIVATE(temp)

do i = 1, n
temp = real(i)

end do
!$OMP END DO
rang=OMP_GET_THREAD_NUM()
print *,"Rang:",rang,";temp=",temp

!$OMP END PARALLEL
end program parallel

> export OMP_NUM_THREADS=4 ; a.out

Rang : 2 ; temp= 9.0
Rang : 3 ; temp= 9.0
Rang : 1 ; temp= 9.0
Rang : 0 ; temp= 9.0

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : boucle parallèle 50

☞ La directive PARALLEL DO est une fusion des
directives PARALLEL et DO munie de l’union
de leurs clauses respectives.

☞ La directive de terminaison
END PARALLEL DO inclut une barrière
globale de synchronisation et ne peut
admettre la clause NOWAIT .

program parallel
implicit none
integer, parameter :: n=9
integer :: i
real :: temp

! $OMP PARALLEL DO LASTPRIVATE(temp)
do i = 1, n

temp = real(i)
end do

!$OMP END PARALLEL DO
end program parallel

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : construction WORKSHARE 51

3.3 – Construction WORKSHARE

☞ Elle ne peut être spécifiée qu’au sein d’une région parallèle.

☞ Elle est utile pour répartir le travail essentiellement lié à certaines constructions
Fortran 95 telles que les :

➳ affectations de type tableau Fortran 90 (i.e. notation A(:, :)) ;

➳ fonctions intrinsèques portant sur des variables de type tableaux (MATMUL,
DOT PRODUCT, SUM, PRODUCT, MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD,

PACK, UNPACK, RESHAPE, TRANSPOSE, EOSHIFT, CSHIFT, MINLOC et

MAXLOC) ;

➳ instructions ou blocs FORALL et WHERE ;

➳ fonctions dites ≪ ELEMENTAL ≫ définies par l’utilisateur.

☞ Elle n’admet que la clause NOWAIT en fin de construction (END WORKSHARE).

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : construction WORKSHARE 52

☞ Seules les instructions ou blocs
Fortran 95 spécifiés dans l’étendue
lexicale verront leur travail réparti
entre les threads.

☞ L’unité de travail est l’élément d’un ta-
bleau. Il n’existe aucun moyen de chan-
ger ce comportement par défaut.

☞ Les surcoûts liés à une telle répartition
du travail peuvent parfois être impor-
tants.

program parallel
implicit none
integer, parameter :: m=4097, n=513
integer :: i, j
real, dimension(m,n) :: a, b

call random_number(b)
a(:,:) = 1.
!$OMP PARALLEL

!$OMP DO
do j=1,n

do i=1,m
b(i,j) = b(i,j) - 0.5

end do
end do

!$OMP END DO
!$OMP WORKSHARE
WHERE(b(:,:) >= 0.) a(:,:)=sqrt(b(:,:))

!$OMP END WORKSHARE NOWAIT
!$OMP END PARALLEL

end program parallel

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : construction WORKSHARE 53

☞ La construction PARALLEL WORKSHARE

est une fusion des constructions
PARALLEL et WORKSHARE munie de
l’union de leurs clauses et de leurs
contraintes respectives à l’exception de
la clause NOWAIT en fin de construction.

program parallel
implicit none
integer, parameter :: m=4097, n=513
real, dimension(m,n) :: a, b

call random_number(b)
!$OMP PARALLEL WORKSHARE
a(:,:) = 1.
b(:,:) = b(:,:) - 0.5
WHERE(b(:,:) >= 0.) a(:,:)=sqrt(b(:,:))

!$OMP END PARALLEL WORKSHARE
end program parallel

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : sections parallèles 54

3.4 – Sections parallèles

☞ Une section est une portion de code exécutée par un et un seul thread.

☞ Plusieurs portions de code peuvent être définies par l’utilisateur à l’aide de la
directive SECTION au sein d’une construction SECTIONS .

☞ Le but est de pouvoir répartir l’exécution de plusieurs portions de code
indépendantes sur différents threads.

☞ La clause NOWAIT est admise en fin de construction END SECTIONS pour lever la
barrière de synchronisation implicite.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : sections parallèles 55

3.4.1 – Construction SECTIONS

program parallel
implicit none
integer, parameter :: n=513, m=4097
real, dimension(m,n) :: a, b
real, dimension(m) :: coord_x
real, dimension(n) :: coord_y
real :: pas_x, pas_y
integer :: i

!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION
call lecture_champ_initial_x(a)
!$OMP SECTION
call lecture_champ_initial_y(b)
!$OMP SECTION
pas_x = 1./real(m-1)
pas_y = 2./real(n-1)
coord_x(:) = (/ (real(i-1)*pas_x,i=1,m) /)
coord_y(:) = (/ (real(i-1)*pas_y,i=1,n) /)
!$OMP END SECTIONS NOWAIT

!$OMP END PARALLEL
end program parallel

subroutine lecture_champ_initial_x(x)
implicit none
integer, parameter :: n=513, m=4097
real, dimension(m,n) :: x

call random_number(x)
end subroutine lecture_champ_initial_x

subroutine lecture_champ_initial_y(y)
implicit none
integer, parameter :: n=513, m=4097
real, dimension(m,n) :: y

call random_number(y)
end subroutine lecture_champ_initial_y

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : sections parallèles 56

3.4.2 – Compléments

☞ Toutes les directives SECTION doivent apparâıtre dans l’étendue lexicale de la
construction SECTIONS .

☞ Les clauses admises dans la directive SECTIONS sont celles que nous connaissons
déja :

➳ PRIVATE ;

➳ FIRSTPRIVATE ;

➳ LASTPRIVATE ;

➳ REDUCTION .

☞ La directive PARALLEL SECTIONS est une fusion des directives PARALLEL et
SECTIONS munie de l’union de leurs clauses respectives.

☞ La directive de terminaison END PARALLEL SECTIONS inclut une barrière globale de
synchronisation et ne peut admettre la clause NOWAIT .

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : exécution exclusive 57

3.5 – Exécution exclusive

☞ Il arrive que l’on souhaite exclure tous les threads à l’exception d’un seul pour
exécuter certaines portions de code incluses dans une région parallèle.

☞ Pour ce faire, OpenMP offre deux directives SINGLE et MASTER .

☞ Bien que le but recherché soit le même, le comportement induit par ces deux
constructions reste fondamentalement différent.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : exécution exclusive 58

3.5.1 – Construction SINGLE

☞ La construction SINGLE permet de faire
exécuter une portion de code par un et un
seul thread sans pouvoir indiquer lequel.

☞ En général, c’est le thread qui arrive le pre-
mier sur la construction SINGLE mais cela
n’est pas spécifié dans la norme.

☞ Tous les threads n’exécutant pas la région
SINGLE attendent, en fin de construction
END SINGLE , la terminaison de celui qui
en a la charge, à moins d’avoir spécifié la
clause NOWAIT .

program parallel
!$ use OMP_LIB
implicit none
integer :: rang
real :: a

! $OMP PARALLEL DEFAULT(PRIVATE)
a = 92290.

!$OMP SINGLE
a = -92290.

!$OMP END SINGLE

rang = OMP_GET_THREAD_NUM()
print *,"Rang :",rang,"; A vaut :",a
!$OMP END PARALLEL

end program parallel

> ifort ... -fopenmp prog.f90
> export OMP_NUM_THREADS=4 ; a.out

Rang : 1 ; A vaut : 92290.
Rang : 2 ; A vaut : 92290.
Rang : 0 ; A vaut : 92290.
Rang : 3 ; A vaut : -92290.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : exécution exclusive 59

☞ La clause supplémentaire COPYPRIVATE est
admise par la directive de terminaison
END SINGLE et elle seule.

☞ Elle permet au thread chargé d’exécuter
la région SINGLE de diffuser aux autres
threads la valeur d’une liste de variables
privées avant de sortir de cette région.

☞ Les autres clauses admises par la directive
SINGLE sont PRIVATE , FIRSTPRIVATE et
NOWAIT .

program parallel
!$ use OMP_LIB
implicit none
integer :: rang
real :: a

! $OMP PARALLEL DEFAULT(PRIVATE)
a = 92290.

!$OMP SINGLE
a = -92290.

! $OMP END SINGLE COPYPRIVATE(a)

rang = OMP_GET_THREAD_NUM()
print *,"Rang :",rang,"; A vaut :",a
!$OMP END PARALLEL

end program parallel

> ifort ... -fopenmp prog.f90
> export OMP_NUM_THREADS=4 ; a.out

Rang : 1 ; A vaut : -92290.
Rang : 2 ; A vaut : -92290.
Rang : 0 ; A vaut : -92290.
Rang : 3 ; A vaut : -92290.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : exécution exclusive 60

3.5.2 – Construction MASTER

☞ La construction MASTER permet de faire
exécuter une portion de code par le seul
thread mâıtre.

☞ Cette construction n’admet aucune clause.

☞ Il n’existe aucune barrière de synchroni-
sation ni en début (MASTER) ni en fin de
construction (END MASTER).

program parallel
!$ use OMP_LIB
implicit none
integer :: rang
real :: a

! $OMP PARALLEL DEFAULT(PRIVATE)
a = 92290.

!$OMP MASTER
a = -92290.

!$OMP END MASTER

rang = OMP_GET_THREAD_NUM()
print *,"Rang :",rang,"; A vaut :",a
!$OMP END PARALLEL

end program parallel

> ifort ... -fopenmp prog.f90
> export OMP_NUM_THREADS=4 ; a.out

Rang : 0 ; A vaut : -92290.
Rang : 3 ; A vaut : 92290.
Rang : 2 ; A vaut : 92290.
Rang : 1 ; A vaut : 92290.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : procédures orphelines 61

3.6 – Procédures orphelines

☞ Une procédure (fonction ou sous-
programme) appelée dans une région
parallèle est exécutée par tous les threads.

☞ En général, il n’y a aucun intérêt à cela si le
travail de la procédure n’est pas distribué.

☞ Cela nécessite l’introduction de directives
OpenMP (DO , SECTIONS , etc.) dans le corps
de la procédure si celle-ci est appelée dans
une région parallèle.

☞ Ces directives sont dites ≪ orphelines ≫ et,
par abus de langage, on parle alors de
procédures orphelines (orphaning).

☞ Une bibliothèque scientifique multithreadée,
parallélisée avec OpenMP, sera constituée
d’un ensemble de procédures orphelines.

> ls
> mat_vect.f90 prod_mat_vect.f90

program mat_vect
implicit none
integer,parameter :: n=1025
real,dimension(n,n) :: a
real,dimension(n) :: x, y
call random_number(a)
call random_number(x) ; y(:)=0.
!$OMP PARALLEL IF(n.gt.256)
call prod_mat_vect(a,x,y,n)
!$OMP END PARALLEL

end program mat_vect

subroutine prod_mat_vect(a,x,y,n)
implicit none
integer,intent(in) :: n
real,intent(in),dimension(n,n) :: a
real,intent(in),dimension(n) :: x
real,intent(out),dimension(n) :: y
integer :: i
!$OMP DO
do i = 1, n

y(i) = SUM(a(i,:) * x(:))
end do
!$OMP END DO

end subroutine prod_mat_vect

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : procédures orphelines 62

☞ Attention, car il existe trois contextes d’exécution selon le mode de compilation des
unités de programme appelantes et appelées :

➳ la directive PARALLEL de l’unité appelante est interprétée (l’exécution peut être
Parallèle) à la compilation ainsi que les directives de l’unité appelée (le travail
peut être Distribué) ;

➳ la directive PARALLEL de l’unité appelante est interprétée à la compilation
(l’exécution peut être Parallèle) mais pas les directives contenues dans l’unité
appelée (le travail peut être Répliqué) ;

➳ la directive PARALLEL de l’unité appelante n’est pas interprétée à la compilation.
L’exécution est partout Séquentielle même si les directives contenues dans l’unité
appelée ont été interprétées à la compilation.

❤
❤

❤
❤

❤
❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤
❤

unité appelante compilée

unité appelée compilée
avec OpenMP sans OpenMP

avec OpenMP P + D P + R

sans OpenMP S S

Table 1 – Contexte d’exécution selon le mode de compilation

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

3 – Partage du travail : récapitulatif 63

3.7 – Récapitulatif

default shared private firstprivate lastprivate copyprivate if reduction schedule ordered copyin nowait

parallel ✓ ✓ ✓ ✓ ✓ ✓ ✓

do ✓ ✓ ✓ ✓ ✓ ✓ ✓

sections ✓ ✓ ✓ ✓ ✓

workshare ✓

single ✓ ✓ ✓ ✓

master

threadprivate

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations 64

4 – Synchronisations

La synchronisation devient nécessaire dans les situations suivantes :

❶ pour s’assurer que tous les threads concurrents aient atteint un même niveau
d’instruction dans le programme (barrière globale) ;

❷ pour ordonner l’exécution de tous les threads concurrents quand ceux-ci doivent
exécuter une même portion de code affectant une ou plusieurs variables partagées
dont la cohérence en mémoire (en lecture ou en écriture) doit être garantie
(exclusion mutuelle).

❸ pour synchroniser au moins deux threads concurrents parmi tous les autres
(mécanisme de verrou).

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations 65

☞ Comme nous l’avons déja indiqué, l’absence de clause NOWAIT signifie qu’une
barrière globale de synchronisation est implicitement appliquée en fin de
construction OpenMP. Mais il est possible d’imposer explicitement une barrière
globale de synchronisation grâce à la directive BARRIER .

☞ Le mécanisme d’exclusion mutuelle (une tâche à la fois) se trouve, par exemple,
dans les opérations de réduction (clause REDUCTION) ou dans l’exécution ordonnée
d’une boucle (directive DO ORDERED). Dans le même but, ce mécanisme est aussi
mis en place dans les directives ATOMIC et CRITICAL .

☞ Des synchronisations plus fines peuvent être réalisées soit par la mise en place de
mécanismes de verrou (cela nécessite l’appel à des sous-programmes de la
bibliothèque OpenMP), soit par l’utilisation de la directive FLUSH .

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : barrière 66

4.1 – Barrière

☞ La directive BARRIER synchronise l’en-
semble des threads concurrents dans une
région parallèle.

☞ Chacun des threads attend que tous les
autres soient arrivés à ce point de syn-
chronisation pour reprendre, ensemble,
l’exécution du programme.

T
em

ps

Barrière

Taches0 1 2 3 4 5

program parallel
implicit none
real,allocatable,dimension(:) :: a, b
integer :: n, i
n = 5
!$OMP PARALLEL
!$OMP SINGLE
allocate(a(n),b(n))

!$OMP END SINGLE
!$OMP MASTER
read(9) a(1:n)

!$OMP END MASTER
!$OMP BARRIER
!$OMP DO SCHEDULE(STATIC)
do i = 1, n

b(i) = 2.*a(i)
end do

!$OMP SINGLE
deallocate(a)

!$OMP END SINGLE NOWAIT
!$OMP END PARALLEL
print *, "B vaut : ", b(1:n)

end program parallel

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : mise à jour atomique 67

4.2 – Mise à jour atomique

☞ La directive ATOMIC assure qu’une va-
riable partagée est lue et modifiée en
mémoire par un seul thread à la fois.

☞ Son effet est local à l’instruction qui suit
immédiatement la directive.

program parallel
!$ use OMP_LIB
implicit none
integer :: compteur, rang
compteur = 92290
!$OMP PARALLEL PRIVATE(rang)
rang = OMP_GET_THREAD_NUM()
!$OMP ATOMIC
compteur = compteur + 1

print *,"Rang :",rang, &
"; compteur vaut :",compteur

!$OMP END PARALLEL
print *,"Au total, compteur vaut :", &

compteur
end program parallel

Rang : 1 ; compteur vaut : 92291
Rang : 0 ; compteur vaut : 92292
Rang : 2 ; compteur vaut : 92293
Rang : 3 ; compteur vaut : 92294
Au total, compteur vaut : 92294

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : mise à jour atomique 68

☞ L’instruction en question doit avoir l’une
des formes suivantes :

➳ x=x (op) exp ;

➳ x=exp (op) x ;

➳ x=f(x,exp) ;

➳ x=f(exp,x).

☞ (op) représente l’une des opérations
suivantes : +, -, ×, /, .AND., .OR.,

.EQV., .NEQV..

☞ f représente une des fonctions intrinsèques
suivantes : MAX, MIN, IAND, IOR, IEOR.

☞ exp est une expression arithmétique quel-
conque indépendante de x.

x

x

x

tem
ps=0

te
m

ps
=1

tem
ps=

2
Programme

x = f(x,exp)

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : régions critiques 69

4.3 – Régions critiques

☞ Une région critique peut être vue comme une généralisation de la directive ATOMIC ,
bien que les mécanismes sous-jacents soient distincts.

☞ Tous les threads exécutent cette région dans un ordre non-déterministe, mais un
seul à la fois.

☞ Une région critique est définie grâce à la directive CRITICAL et s’applique à une
portion de code terminée par END CRITICAL .

☞ Son étendue est dynamique.

☞ Pour des raisons de performance, il est fortement déconseillé d’émuler une
instruction atomique par une région critique.

☞ Un nom optionnel peut être utilisé pour nommer une région critique.

☞ Toutes les régions critiques non explicitement nommées sont considérées comme
ayant le même nom non spécifié.

☞ Si plusieurs régions critiques ont le même nom, elles sont considérées pour le
mécanisme d’exclusion mutuel comme une seule et unique région critique.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : régions critiques 70

program parallel
implicit none
integer :: s, p

s=0
p=1

!$OMP PARALLEL
!$OMP CRITICAL
s = s + 1

!$OMP END CRITICAL
!$OMP CRITICAL (RC1)
p = p * 2

!$OMP END CRITICAL (RC1)
!$OMP CRITICAL
s = s + 1

!$OMP END CRITICAL
!$OMP END PARALLEL

print *, "s= ",s, " ; p= ",p

end program parallel

> ifort ... -fopenmp prog.f90
> export OMP_NUM_THREADS=4 ; a.out

s= 8 ; p= 16

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 71

4.4 – Directive FLUSH

☞ Elle est utile dans une région parallèle
pour rafrâıchir la valeur d’une variable
partagée en mémoire globale.

☞ Elle est d’autant plus utile que la
mémoire d’une machine est hiérarchisée.

☞ Elle peut servir à mettre en place un
mécanisme de point de synchronisation
entre les threads.

synch 0

1

2

3

program anneau
!$ use OMP_LIB
implicit none
integer :: rang,nb_taches,synch=0
! $OMP PARALLEL PRIVATE(rang,nb_taches)
rang=OMP_GET_THREAD_NUM()
nb_taches=OMP_GET_NUM_THREADS()
if (rang == 0) then ; do

!$OMP FLUSH(synch)
if(synch == nb_taches-1) exit

end do
else ; do

!$OMP FLUSH(synch)
if(synch == rang-1) exit

end do
end if
print *,"Rang:",rang,";synch:",synch
synch=rang
!$OMP FLUSH(synch)

!$OMP END PARALLEL
end program anneau

Rang : 1 ; synch : 0
Rang : 2 ; synch : 1
Rang : 3 ; synch : 2
Rang : 0 ; synch : 3

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 72

4.4.1 – Exemple avec un piège facile

program anneau2-faux
!$ use OMP_LIB
implicit none
integer :: rang,nb_taches,synch=0,compteur=0
! $OMP PARALLEL PRIVATE(rang,nb_taches)
rang=OMP_GET_THREAD_NUM()
nb_taches=OMP_GET_NUM_THREADS()
if (rang == 0) then ; do

!$OMP FLUSH(synch)
if(synch == nb_taches-1) exit

end do
else ; do

!$OMP FLUSH(synch)
if(synch == rang-1) exit

end do
end if
compteur=compteur+1
print *,"Rang:",rang,";synch:",synch
synch=rang
!$OMP FLUSH(synch)

!$OMP END PARALLEL
print *,"Compteur = ",compteur

end program anneau2-faux

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 73

4.4.2 – Exemple avec un piège difficile

program anneau3-faux
!$ use OMP_LIB
implicit none
integer :: rang,nb_taches,synch=0,compteur=0
! $OMP PARALLEL PRIVATE(rang,nb_taches)
rang=OMP_GET_THREAD_NUM(); nb_taches=OMP_GET_NUM_THREADS()
if (rang == 0) then ; do

!$OMP FLUSH(synch)
if(synch == nb_taches-1) exit

end do
else ; do

!$OMP FLUSH(synch)
if(synch == rang-1) exit

end do
end if
print *,"Rang:",rang,";synch:",synch
!$OMP FLUSH(compteur)
compteur=compteur+1
!$OMP FLUSH(compteur)
synch=rang
!$OMP FLUSH(synch)

!$OMP END PARALLEL
print *,"Compteur = ",compteur

end program anneau3-faux

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 74

4.4.3 – Commentaires sur les codes précédents

☞ Dans anneau2-faux, on n’a pas flushé la variable partagée compteur avant et après
l’avoir incrémentée. Le résultat final peut potentiellement être faux.

☞ Dans anneau3-faux, le compilateur peut inverser les lignes :

compteur=compteur+1
!$OMP FLUSH(compteur)

et les lignes :
synch=rang
!$OMP FLUSH(synch)

libérant le thread qui suit avant que la variable compteur n’ait été incrémentée...
Là encore, le résultat final pourrait potentiellement être faux.

☞ Pour résoudre ce problème, il faut flusher les deux variables compteur et synch
juste après l’incrémentation de la variable compteur, ainsi on impose un ordre au
compilateur.

☞ Le code corrigé se trouve à la diapositive suivante.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 75

4.4.4 – Code corrigé

program anneau4
!$ use OMP_LIB
implicit none
integer :: rang,nb_taches,synch=0,compteur=0
! $OMP PARALLEL PRIVATE(rang,nb_taches)
rang=OMP_GET_THREAD_NUM()
nb_taches=OMP_GET_NUM_THREADS()
if (rang == 0) then ; do

!$OMP FLUSH(synch)
if(synch == nb_taches-1) exit

end do
else ; do

!$OMP FLUSH(synch)
if(synch == rang-1) exit

end do
end if
print *,"Rang:",rang,";synch:",synch
!$OMP FLUSH(compteur)
compteur=compteur+1
!$OMP FLUSH(compteur,synch)
synch=rang
!$OMP FLUSH(synch)

!$OMP END PARALLEL
print *,"Compteur = ",compteur

end program anneau4

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 76

4.4.5 – Nid de boucles avec double dépendance

☞ Considérons le code suivant :
! Boucles avec double dependance
do j = 2, ny

do i = 2, nx
V(i,j) =(V(i,j) + V(i-1,j) + V(i,j-1))/3

end do
end do

☞ C’est un problème classique en parallélisme (par exemple décomposition LU).

☞ Du fait de la dépendance arrière en i et en j, ni la boucle en i, ni la boucle en j ne
sont parallèles (i.e. chaque itération en i ou j dépend de l’itération précédente).

☞ Paralléliser avec la directive OpenMP PARALLEL DO la boucle en i ou la boucle en j
donnerait des résultats faux.

☞ Pourtant, il est quand même possible d’exhiber du parallélisme de ce nid de boucles
en effectuant les calculs dans un ordre qui ne casse pas les dépendances.

☞ Il existe au moins deux méthodes pour paralléliser ce nid de boucles : l’algorithme
de l’hyperplan et celui du software pipelining.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 77

Algorithme de l’hyperplan

☞ Le principe est simple : nous al-
lons travailler sur des hyperplans
d’équation : i+ j = cste qui corres-
pondent à des diagonales de la ma-
trice.

☞ Sur un hyperplan donné, les mises
à jour des éléments de cet hyper-
plan sont indépendantes les unes des
autres, donc ces opérations peuvent
être réalisées en parallèle.

☞ Par contre, il existe une relation de
dépendance entre les hyperplans ; on
ne peut pas mettre à jour d’éléments
de l’hyperplan Hn tant que la mise
à jour de ceux de l’hyperplan Hn−1

n’est pas terminée.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 78

Algorithme de l’hyperplan (2)

☞ Une réécriture du code est nécessaire, avec une boucle externe sur les hyperplans
(non parallèle) et une boucle parallèle interne sur les éléments appartenant à
l’hyperplan qui peuvent être mis à jour dans un ordre quelconque.

☞ Le code peut se réécrire sous la forme suivante :
! boucle non //, dépendance entre les hyperplans
do h = 1,nbre_hyperplan

! calcul tab. d’indices i et j des éléments des hyperplans h
call calcul(INDI,INDJ,h)
! boucle sur le nombre d’éléments de l’hyperplan h
do e = 1,nbre_element_hyperplan

i = INDI(e)
j = INDJ(e)
V(i,j) =(V(i,j) + V(i-1,j) + V(i,j-1))/3 ! MAJ de l’élément V(i,j)

enddo
enddo

☞ Une fois le code réécrit, la parallélisation est très simple et ne nécessite pas d’avoir
recours à des synchronisations fines.

☞ Les performances obtenues ne sont hélas pas optimales (médiocre utilisation des
caches due aux accès en diagonale, donc non contigu en mémoire).

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 79

Algorithme software pipelining

☞ Le principe est simple : paralléliser par blocs la boucle la plus interne et jouer sur
les itérations de la boucle externe pour ne pas casser de dépendance en
synchronisant finement les threads entre eux.

☞ On découpe la matrice en tranches horizontales et on attribue chaque tranche à un
thread.

☞ Les dépendances imposent alors que le thread 0 doit toujours traiter une itération
de la boucle externe j qui doit être supérieure à celle du thread 1, qui elle-même
doit être supérieure à celle du thread 2 et ainsi de suite...

☞ Lorsqu’un thread a terminé de traiter la jeme colonne de son domaine, il doit
vérifier avant de continuer que le thread qui le précède a lui-même terminé de
traiter la colonne suivante (i.e. la j + 1eme). Si ce n’est pas le cas, il faut le faire
attendre jusqu’à ce que cette condition soit remplie.

☞ Pour implémenter cet algorithme, il faut constamment synchroniser les threads deux
à deux et ne libérer un thread que lorsque la condition énoncée précédemment est
réalisée.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 80

Algorithme software pipelining (2)

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : directive FLUSH 81

Algorithme software pipelining (3)

☞ Finalement, l’implémentation de cette méthode peut se faire de la façon suivante :
myOMPRank = ...
nbOMPThrds = ...

call calcul_borne(iDeb,iFin)

do j= 2,n
! On bloque le thread (sauf le 0) tant que le
! précedent n’a pas fini le traitement
! de l’itération j+1
call sync(myOMPRank,j)

! Boucle // distribuée sur les threads
do i = iDeb,iFin

! MAJ de l’élément V(i,j)
V(i,j) =(V(i,j) + V(i-1,j) + V(i,j-1))/3

enddo
enddo

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

4 – Synchronisations : récapitulatif 82

4.5 – Récapitulatif

default shared private firstprivate lastprivate copyprivate if reduction schedule ordered copyin nowait

parallel ✓ ✓ ✓ ✓ ✓ ✓ ✓

do ✓ ✓ ✓ ✓ ✓ ✓ ✓

sections ✓ ✓ ✓ ✓ ✓

workshare ✓

single ✓ ✓ ✓ ✓

master

threadprivate

atomic

critical

flush

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

5 – Vectorisation SIMD : introduction 83

5 – Vectorisation SIMD

5.1 – Introduction

☞ SIMD = Single Instruction Multiple Data

☞ Une seule instruction/opération agit en pa-
rallèle sur plusieurs éléments.

☞ Avant OpenMP 4.0, les développeurs de-
vaient soit se reposer sur le savoir-faire du
compilateur, soit avoir recours à des exten-
sions propriétaires (directives ou fonctions in-
trinsèques).

☞ OpenMP 4.0 offre la possibilité de gérer la
vectorisation SIMD de façon portable et per-
formante en utilisant les instructions vecto-
rielles disponibles sur l’architecture cible.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

5 – Vectorisation SIMD : vectorisation SIMD d’une
boucle 84

5.2 – Vectorisation SIMD d’une boucle

☞ La directive SIMD permet de découper
la boucle qui la suit immédiatement en
morceaux dont la taille correspond à
celle des registres vectoriels disponibles
sur l’architecture cible.

☞ La directive SIMD n’entraine pas la pa-
rallélisation de la boucle.

☞ La directive SIMD peut ainsi s’utiliser
aussi bien à l’intérieur qu’à l’extérieur
d’une région parallèle.

program boucle_simd
implicit none
integer(kind=8) :: i
integer(kind=8), parameter :: n=500000
real(kind=8), dimension(n) :: A, B
real(kind=8) :: somme
...
somme=0
!$OMP SIMD REDUCTION(+:somme)
do i=1,n

somme=somme+A(i)*B(i)
enddo
...
end program boucle_simd

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

5 – Vectorisation SIMD : parallélisation et vectorisation
SIMD d’une boucle 85

5.3 – Parallélisation et vectorisation SIMD d’une boucle

☞ La construction DO SIMD est une fu-
sion des directives DO et SIMD munie de
l’union de leurs clauses respectives.

☞ Cette construction permet de partager le
travail et de vectoriser le traitement des
itérations de la boucle.

☞ Les paquets d’itérations sont distribués
aux threads en fonction du mode de
répartition choisi. Chacun vectorise le
traitement de son paquet en le subdivi-
sant en bloc d’itérations de la taille des re-
gistres vectoriels, blocs qui seront traités
l’un après l’autre avec des instructions
vectorielles.

☞ La directive PARALLEL DO SIMD permet
en plus de créer la région parallèle.

program boucle_simd
implicit none
integer(kind=8) :: i
integer(kind=8), parameter :: n=500000
real(kind=8), dimension(n) :: A, B
real(kind=8) :: somme
...
somme=0
! $OMP PARALLEL DO SIMD REDUCTION(+:somme)
do i=1,n

somme=somme+A(i)*B(i)
enddo
...
end program boucle_simd

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

5 – Vectorisation SIMD : vectorisation SIMD de
fonctions scalaires 86

5.4 – Vectorisation SIMD de fonctions scalaires

☞ Le but est de créer automatiquement
une version vectorielle de fonctions
scalaires. Les fonctions ainsi générées
pourront être appelées à l’intérieur de
boucles vectorisées, sans casser la vec-
torisation.

☞ La version vectorielle de la fonction
permettra de traiter les itérations par
bloc et non plus l’une après l’autre...

☞ La directive DECLARE SIMD permet de
générer une version vectorielle en plus
de la version scalaire de la fonction
dans laquelle elle est déclarée.

program boucle_fonction_simd
implicit none
integer, parameter :: n=1000
integer :: i
real, dimension(n) :: A, B
real :: dist_max
...
dist_max=0
! $OMP PARALLEL DO SIMD REDUCTION(max:dist_max)
do i=1,n

dist_max=max(dist_max,dist(A(i),B(i)))
enddo
!$OMP END PARALLEL DO SIMD

print *,"Distance maximum = ",dist_max

contains

real function dist(x,y)
!$OMP DECLARE SIMD (dist)
real, intent(in) :: x, y
dist=sqrt(x*x+y*y)

end function dist

end program boucle_fonction_simd

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : introduction 87

6 – Les tâches OpenMP

6.1 – Introduction

☞ Le modèle ≪ fork and join ≫ associé aux constructions de partage du travail est
limitatif.

☞ En particulier, il n’est pas adapté aux problématiques dynamiques (boucles while,
recherche en parallèle dans un arbre, etc.) ou aux algorithmes récursifs.

☞ Un mouveau modèle basé sur la notion de tâches a été introduit avec la version
OpenMP 3.0. Il est complémentaire de celui uniquement axé sur les threads.

☞ Il permet l’expression du parallélisme pour les algorithmes récursifs ou à base de
pointeurs, couramment utilisés en C/C++.

☞ La version OpenMP 4.0 permet de gérer des constructions de génération et de
synchronisation de tâches explicites (avec ou sans dépendances).

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : les bases du concept 88

6.2 – Les bases du concept

☞ Une tâche OpenMP est constituée d’une instance de code exécutable et de ses
données associées. Elle est exécutée par un thread.

☞ Deux types de tâches existent :

➳ Les tâches implicites générées par la directive PARALLEL

➳ Les tâches explicites générées par la directive TASK

☞ Plusieurs types de synchronisation sont disponibles :

➳ Pour une tâche donnée, la directive TASKWAIT permet d’attendre la terminaison
de tous ses fils (de première génération).

➳ La directive TASKGROUP/END TASKGROUP permet d’attendre la terminaison de
tous les descendants d’un groupe de tâches.

➳ Des barrières implicites ou explicites permettent d’attendre la terminaison de
toutes les tâches explicites déjà créées.

☞ Les variables (et leur statut associé) sont relatives à une tâche, sauf pour la
directive THREADPRIVATE qui est, elle, associée à la notion de thread.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : le modèle d’exécution des
tâches 89

6.3 – Le modèle d’exécution des tâches

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : le modèle d’exécution des
tâches 90

☞ L’exécution commence avec le thread master seul.

☞ À la rencontre d’une région parallèle (PARALLEL) :

➳ Création d’une équipe de threads.

➳ Création des tâches implicites, une par thread, chaque thread exécutant sa tâche
implicite.

☞ À la rencontre d’une construction de partage du travail :

➳ Distribution du travail aux threads (ou aux tâches implicites)

☞ À la rencontre d’une construction TASK :

➳ Création de tâches explicites.

➳ L’exécution de ces tâches explicites peut ne pas être immédiate.

☞ Exécution des tâches explicites :

➳ À des points du code appelés task scheduling point (TASK , TASKWAIT , BARRIER),
les threads disponibles commencent l’exécution des tâches en attente.

➳ Un thread peut passer de l’exécution d’une tâche à une autre.

☞ À la fin de la région parallèle :

➳ Toutes les tâches terminent leur exécution.

➳ Seul le thread master continue l’exécution de la partie séquentielle.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : quelques exemples 91

6.4 – Quelques exemples

program task_print
implicit none

print *,"Un "
print *,"grand "
print *,"homme "

end program task_print

> ifort ... -fopenmp task_print.f90
> export OMP_NUM_THREADS=2 ; a.out

Un
grand
homme

program task_print
implicit none

!$OMP PARALLEL
print *,"Un "
print *,"grand "
print *,"homme "
!$OMP END PARALLEL

end program task_print

> ifort ... -fopenmp task_print.f90
> export OMP_NUM_THREADS=2 ; a.out

Un
grand
Un
homme
grand
homme

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : quelques exemples 92

program task_print
implicit none
!$OMP PARALLEL
!$OMP SINGLE
print *,"Un "
print *,"grand "
print *,"homme "
!$OMP END SINGLE
!$OMP END PARALLEL
end program task_print

> ifort ... -fopenmp task_print.f90
> export OMP_NUM_THREADS=2 ; a.out

Un
grand
homme

program task_print
implicit none
!$OMP PARALLEL
!$OMP SINGLE
print *,"Un "
!$OMP TASK
print *,"grand "
!$OMP END TASK
!$OMP TASK
print *,"homme "
!$OMP END TASK
!$OMP END SINGLE
!$OMP END PARALLEL
end program task_print

> ifort ... -fopenmp task_print.f90
> export OMP_NUM_THREADS=2 ; a.out; a.out

Un
grand
homme

Un
homme
grand

☞ Les tâches peuvent être exécutées dans n’importe quel ordre...

☞ Comment terminer la phrase par ≪ a marche sur la lune ≫ ?

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : quelques exemples 93

☞ Si on rajoute un print juste avant la
fin de la région SINGLE , ca ne marche
pas !

☞ En effet, les tâches explicites ne
sont exécutables qu’aux task schedu-
ling point du code (TASK , TASKWAIT ,
BARRIER)...

program task_print
implicit none
!$OMP PARALLEL
!$OMP SINGLE
print *,"Un "
!$OMP TASK
print *,"grand "
!$OMP END TASK
!$OMP TASK
print *,"homme "
!$OMP END TASK
print *,"a marche sur la lune"
!$OMP END SINGLE
!$OMP END PARALLEL
end program task_print

> ifort ... -fopenmp task_print.f90
> export OMP_NUM_THREADS=2 ; a.out; a.out

Un
a marche sur la lune
homme
grand

Un
a marche sur la lune
grand
homme

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : quelques exemples 94

☞ La solution consiste à introduire un
task scheduling point avec la di-
rective TASKWAIT pour exécuter les
tâches explicites, puis attendre que
ces dernières aient terminé avant de
continuer.

☞ Si on veut imposer un ordre entre
≪ grand ≫ et ≪ homme ≫, il faut uti-
liser la clause DEPEND introduite dans
OpenMP 4.0.

program task_print
implicit none
!$OMP PARALLEL
!$OMP SINGLE
print *,"Un "
!$OMP TASK
print *,"grand "
!$OMP END TASK
!$OMP TASK
print *,"homme "
!$OMP END TASK
!$OMP TASKWAIT
print *,"a marche sur la lune"
!$OMP END SINGLE
!$OMP END PARALLEL
end program task_print

> ifort ... -fopenmp task_print.f90
> export OMP_NUM_THREADS=2 ; a.out; a.out

Un
homme
grand
a marche sur la lune

Un
grand
homme
a marche sur la lune

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : dépendance entre tâches 95

6.5 – Dépendance entre tâches

☞ La clause DEPEND(type dependance:list) permet de gérer des dépendances entre
des tâches explicites ayant le même père (i.e. générées par la même tâche).

☞ Une tâche T1 qui dépend de la tâche T2 ne pourra commencer à s’exécuter que
lorsque l’exécution de T2 sera terminée.

☞ Il existe trois types de dépendance :

➳ IN : la tâche générée sera une tâche dépendante de toutes les tâches
précédemment générées par le même père, qui référencent au moins un élément
en commun dans la liste de dépendance de type OUT ou INOUT .

➳ INOUT et OUT : la tâche générée sera une tâche dépendante de toutes les tâches
précédemment générées par le même père, qui référencent au moins un élément
en commun dans la liste de dépendance de type IN , OUT ou INOUT .

☞ La liste de variables de la directive DEPEND correspond à une adresse mémoire et
peut être un élément d’un tableau ou une section de tableau.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : dépendance entre tâches 96

☞ Introduisons une dépendance entre les
tâches explicites pour que la tâche
T1 : print *,”grand ” s’exécute avant
la tâche T2 : print *,”homme ”.

☞ On peut par exemple utiliser la clause
DEPEND(OUT:T1) pour la tâche T1 et
DEPEND(IN:T1) pour la tâche T2.

program task_print
implicit none
integer :: T1
!$OMP PARALLEL
!$OMP SINGLE
print *,"Un "
!$OMP TASK DEPEND(OUT:T1)
print *,"grand "
!$OMP END TASK
!$OMP TASK DEPEND(IN:T1)
print *,"homme "
!$OMP END TASK
!$OMP TASKWAIT
print *,"a marche sur la lune"
!$OMP END SINGLE
!$OMP END PARALLEL
end program task_print

> ifort ... -fopenmp task_print.f90
> export OMP_NUM_THREADS=2 ; a.out

Un
grand
homme
a marche sur la lune

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : statut des variables dans les
tâches 97

6.6 – Statut des variables dans les tâches

☞ Le statut par défaut des variables est :

➳ SHARED pour les tâches implicites

➳ Pour les tâches explicites :

➠ Si la variable est SHARED dans la tâche père, alors elle hérite de son statut
SHARED .

➠ Dans les autres cas, le statut par défaut est FIRSTPRIVATE .

☞ Lors de la création de la tâche, on peut utiliser les clauses SHARED(list) ,
PRIVATE(list) , FIRSTPRIVATE(list) ou
DEFAULT(PRIVATE|FIRSTPRIVATE|SHARED|NONE) (en C/C++ uniquement
DEFAULT(PRIVATE|NONE)) pour spécifier explicitement le statut des variables qui
apparaissent lexicalement dans la tâche.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : exemple de MAJ des éléments
d’une liste châınée 98

6.7 – Exemple de MAJ des éléments d’une liste châınée

☞ Étant donnée une liste châınée, com-
ment mettre à jour tous les éléments de
cette liste en parallèle...

type element
integer :: valeur
type(element), pointer :: next
end type element

subroutine increment_lst_ch(debut)
type(element), pointer :: debut, p
p=>debut
do while (associated(p))
p%valeur=p%valeur+1
p=>p%next
end do
end subroutine increment_lst_ch

☞ Schéma de type producteur/consom-
mateur (thread qui exécute la région
single/les autres threads)

subroutine increment_lst_ch(debut)
type(element), pointer :: debut, p
!$OMP PARALLEL PRIVATE(p)
!$OMP SINGLE
p=>debut
do while (associated(p))
!$OMP TASK
p%valeur=p%valeur+1
!$OMP END TASK
p=>p%next
end do
!$OMP END SINGLE
!$OMP END PARALLEL
end subroutine increment_lst_ch

☞ Le statut de la variable p à l’intérieur
de la tâche explicite est FIRSTPRIVATE

par défaut, ce qui est le statut voulu.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : exemple d’algorithme récursif99

6.8 – Exemple d’algorithme récursif

☞ La suite de Fibonacci est définie par : f(0)=0 ;
f(1)=1 ; f(n)=f(n-1)+f(n-2)

☞ Le code construit un arbre binaire. La pa-
rallélisme provient du traitement des feuilles de
cet arbre en parallèle.

☞ Un seul thread va générer les tâches, mais l’en-
semble des threads vont participer à l’exécution.

☞ Attention au statut des variables dans
cet exemple : le statut par défaut (i.e.
FIRSTPRIVATE) donnerait des résultats faux. Il
faut nécessairement que i et j soient partagées
pour pouvoir récupérer le résultat dans la tâche
père...

☞ Attention, la directive TASKWAIT est aussi obliga-
toire pour s’assurer que les calculs de i et j soient
terminés avant de retourner le résultat.

☞ Cette version n’est pas performante...

program fib_rec
integer, parameter :: nn=10
integer :: res_fib
!$OMP PARALLEL
!$OMP SINGLE
res_fib=fib(nn)
!$OMP END SINGLE
!$OMP END PARALLEL
print *,"res_fib = ",res_fib
contains
recursive integer function fib(n) &
result(res)
integer, intent(in) :: n
integer :: i, j
if (n<2) then res = n
else
!$OMP TASK SHARED(i)
i=fib(n-1)
!$OMP END TASK
!$OMP TASK SHARED(j)
j=fib(n-2)
!$OMP END TASK
!$OMP TASKWAIT
res=i+j
endif
end function fib
end program fib_rec

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : clauses FINAL et MERGEABLE 100

6.9 – Clauses FINAL et MERGEABLE

☞ Dans le cas d’algorithmes récursifs de type ≪ Divide and Conquer ≫, le volume du
travail de chaque tâche (i.e. la granularité) diminue au fil de l’exécution. C’est la
principale raison pour laquelle le code précédent n’est pas performant.

☞ Les clauses FINAL et MERGEABLE sont alors très utiles : elles permettent au
compilateur de pouvoir fusionner les nouvelles tâches créées.

☞ Malheureusement, ces fonctionnalités ne sont que très rarement implémentées de
façon efficace, aussi vaut-il mieux mieux avoir recours à un ≪ cut off ≫ manuel dans
le code...

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : synchronisation de type
TASKGROUP 101

6.10 – Synchronisation de type TASKGROUP

☞ La construction TASKGROUP permet de
définir un groupe de tâches et d’at-
tendre en fin de construction que toutes
ces tâches, ainsi que leurs descendantes,
aient terminé leur execution.

☞ Dans cet exemple, nous allons particu-
lariser une tâche qui va effectuer un cal-
cul en tâche de fond pendant que sont
lancées en parallèle plusieurs itérations
de la traversée d’un arbre binaire. A
chacune des itérations, on synchronise
les tâches ayant été générées pour la tra-
versée de l’arbre et uniquement celles-
ci.

module arbre_mod
type type_arbre
type(type_arbre), pointer :: fg, fd
end type
contains
subroutine traitement_feuille(feuille)
type(type_arbre), pointer :: feuille
! Traitement...
end subroutine traitement_feuille
recursive subroutine traverse_arbre(arbre)
type(type_arbre), pointer :: arbre
if (associated(arbre%fg)) then
!$OMP TASK
call traverse_arbre(arbre%fg)
!$OMP END TASK
endif
if (associated(arbre%fd)) then
!$OMP TASK
call traverse_arbre(arbre%fd)
!$OMP END TASK
endif
!$OMP TASK
call traitement_feuille(arbre)
!$OMP END TASK
end subroutine traverse_arbre
end module arbre_mod

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

6 – Les tâches OpenMP : synchronisation de type
TASKGROUP 102

program principal
use arbre_mod
type(type_arbre), pointer :: mon_arbre
integer, parameter :: niter=100
call init_arbre(mon_arbre)
!$OMP PARALLEL
!$OMP SINGLE
!$OMP TASK
call travail_tache_de_fond()
!$OMP END TASK
do i=1, niter
!$OMP TASKGROUP
!$OMP TASK
call traverse_arbre(mon_arbre)
!$OMP END TASK
!$OMP END TASKGROUP
enddo
!$OMP END SINGLE
!$OMP END PARALLEL
end program principal

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité des threads 103

7 – Affinités

7.1 – Affinité des threads

☞ Par défaut, le système d’exploitation choisit le cœur d’exécution d’un thread.
Celui-ci peut changer en cours d’exécution, au prix d’une forte pénalité.

☞ Pour pallier ce problème, il est possible d’associer explicitement un thread à un
cœur pendant toute la durée de l’exécution : c’est ce que l’on appelle le binding.

☞ Avec les compilateurs GNU, l’association thread/cœur d’exécution se fait avec la
variable d’environnement GOMP CPU AFFINITY.

☞ Avec les compilateurs Intel, l’association thread/cœur d’exécution se fait avec la
variable d’environnement KMP AFFINITY (cf. Intel Thread Affinity Interface).

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité des threads 104

7.1.1 – Commande cpuinfo

☞ La commande cpuinfo permet d’obtenir de nombreuses informations sur la
topologie du nœud d’exécution (nombre et numérotation des sockets, des cœurs
physiques et logiques, activation ou non de l’hyperthreading, etc.).

> cpuinfo <= Exemple sur un noeud SMP sans l’hyperthreading activé
Intel(R) Processor information utility, Version 4.1.0 Build 20120831
Copyright (C) 2005-2012 Intel Corporation. All rights reserved.

===== Processor composition =====
Processor name : Intel(R) Xeon(R) E5-4650 0
Packages(sockets) : 4 <= Nb de sockets du noeud
Cores : 32 <= Nb de coeurs physiques du noeud
Processors(CPUs) : 32 <= Nb de coeurs logiques du noeud
Cores per package : 8 <= Nb de coeurs physiques par socket
Threads per core : 1 <= Nb de coeurs logiques par coeur physique,hyperthreading actif si valeur >1

===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 4 0
5 0 5 0
6 0 6 0
7 0 7 0
8 0 0 1
9 0 1 1
...
30 0 6 3
31 0 7 3
===== Placement on packages =====
Package Id. Core Id. Processors
0 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7
1 0,1,2,3,4,5,6,7 8,9,10,11,12,13,14,15
2 0,1,2,3,4,5,6,7 16,17,18,19,20,21,22,23
3 0,1,2,3,4,5,6,7 24,25,26,27,28,29,30,31

===== Cache sharing =====
Cache Size Processors
L1 32 KB no sharing
L2 256 KB no sharing
L3 20 MB (0,1,2,3,4,5,6,7)(8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31)

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité des threads 105

> cpuinfo <= Exemple sur un noeud SMP avec l’hyperthreading activé
Intel(R) Processor information utility, Version 4.1.0 Build 20120831
Copyright (C) 2005-2012 Intel Corporation. All rights reserved.

===== Processor composition =====
Processor name : Intel(R) Xeon(R) E5-4650 0
Packages(sockets) : 4 <= Nb de sockets du noeud
Cores : 32 <= Nb de coeurs physiques du noeud
Processors(CPUs) : 64 <= Nb de coeurs logiques du noeud
Cores per package : 8 <= Nb de coeurs physiques par socket
Threads per core : 2 <= Nb de coeurs logiques par coeur physique,hyperthreading actif si valeur >1

===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 4 0
5 0 5 0
6 0 6 0
7 0 7 0
8 0 0 1
9 0 1 1
10 0 2 1
...
54 1 6 2
55 1 7 2
56 1 0 3
57 1 1 3
58 1 2 3
59 1 3 3
60 1 4 3
61 1 5 3
62 1 6 3
63 1 7 3
===== Placement on packages =====
Package Id. Core Id. Processors
0 0,1,2,3,4,5,6,7 (0,32)(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)
1 0,1,2,3,4,5,6,7 (8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)
2 0,1,2,3,4,5,6,7 (16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)
3 0,1,2,3,4,5,6,7 (24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)

===== Cache sharing =====
Cache Size Processors
L1 32 KB (0,32)(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)
(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)
L2 256 KB (0,32)(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)
(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)
L3 20 MB (0,1,2,3,4,5,6,7,32,33,34,35,36,37,38,39)(8,9,10,11,12,13,14,15,40,41,42,43,44,45,46,47)
(16,17,18,19,20,21,22,23,48,49,50,51,52,53,54,55)(24,25,26,27,28,29,30,31,56,57,58,59,60,61,62,63)

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité des threads 106

7.1.2 – Utilisation de la variable d’environnement KMP AFFINITY

Les principaux modes d’association
thread/cœur d’exécution sont les suivants :

☞ mode compact : les threads de numéros
consécutifs sont bindés sur des cœurs lo-
giques ou physiques (suivant que l’hy-
perthreading est activé ou non) qui
sont les plus proches possibles les uns
des autres. Cela permet de réduire les
défauts de cache et de TLB (Transla-
tion lookaside buffer).

> export KMP_AFFINITY=granularity=fine,compact,verbose

C1C0

C3

C5

C2 C6

C4

C7

C9C8

C11

C13

C10 C14

C12

C15

S1S0

Exemple sur une architecture bi-sockets
quadri-cœurs, avec l’hyperthreading ac-
tivé.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité des threads 107

☞ mode scatter : c’est le contraire du
mode compact, les threads de numéros
consécutifs sont bindés sur des cœurs
logiques ou physiques (suivant que l’hy-
perthreading est activé ou non) qui sont
les plus éloignés les uns des autres.

☞ mode explicit : on définit explicitement
le binding des threads sur les cœurs lo-
giques ou physiques.

> export KMP_AFFINITY=granularity=fine,scatter,verbose

C1C0

C3

C5

C2 C6

C4

C7

C9C8

C11

C13

C10 C14

C12

C15

S1S0

> export KMP_AFFINITY=proclist=[2,10,13,6],explicit,verbose

C1C0

C3

C5

C2 C6

C4

C7

C9C8

C11

C13

C10 C14

C12

C15

S1S0

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité des threads 108

7.1.3 – Affinité des threads avec OpenMP 4.0

☞ OpenMP4.0 introduit la notion de places qui définissent des ensembles de coeurs
logiques ou physiques qui seront associés à l’exécution d’un thread.

☞ Les places peuvent être définies explicitement par l’intermédiaire d’une liste, ou
directement avec les mots clés suivants :

➳ threads : chaque place correspond à un coeur logique de la machine,

➳ cores : chaque place correspond à un coeur physique de la machine,

➳ sockets : chaque place correspond à un socket de la machine.

☞ Exemples pour une architecture bi-sockets quadri-coeurs avec hyperthreading :

➳ OMP PLACES=threads : 16 places correspondant a un coeur logique

➳ OMP PLACES=”threads(4)” : 4 places correspondant a un coeur logique

➳ OMP PLACES=”{0,8,1,9},{6,14,7,15}” : 2 places, la premiere sur le premier
socket, la seconde sur le deuxieme.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité des threads 109

☞ La clause PROC BIND de la construction PARALLEL ou la variable d’environnement
OMP PROC BIND permettent de choisir l’affinité parmi les choix suivants :

➳ SPREAD répartition équitable des threads sur les différentes places définies

➳ CLOSE regroupement des threads au plus près du master thread

➳ MASTER les threads s’exécutent sur la même place que celle du master

export OMP_PLACES="{0,8,1,9},{2,10,3,11},{4,12,5,13},{6,14,7,15}"
Soit 4 places p0={0,8,1,9}, p1={2,10,3,11}, p2={4,12,5,13} et p3={6,14,7,15}
! $OMP PARALLEL PROC_BIND(SPREAD) NUM_THREADS(2)

! $OMP PARALLEL PROC_BIND(CLOSE) NUM_THREADS(4)
....
Dans la premiere region parallele
Th0 s’executera sur p0 avec une partition de place =p0p1
Th1 s’executera sur p2 avec une partition de place =p2p3
Dans la seconde region parallele
Th00 et Th01 s’executeront sur p0
Th02 et Th03 s’executeront sur p1
Th10 et Th11 s’executeront sur p2
Th12 et Th13 s’executeront sur p3

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité mémoire 110

7.2 – Affinité mémoire

☞ Les nœuds multi-socket modernes sont fortement NUMA (Non Uniform Memory
Access), le temps d’accès à une donnée est variable suivant l’emplacement du banc
mémoire où elle est stockée.

☞ La localité du stockage en mémoire des variables partagées (sur la mémoire locale
du socket qui exécute le thread ou sur la mémoire distante d’un autre socket) va
fortement influer sur les performances du code.

☞ Le système d’exploitation essaie d’optimiser ce processus d’allocation mémoire en
privilégiant, lorsque cela est possible, l’allocation dans la mémoire locale du socket
qui est en charge de l’exécution du thread. C’est ce que l’on appelle l’affinité
mémoire.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité mémoire 111

Architecture simplifiée d’une machine fortement NUMA (quadri-sockets, octo-cœurs).

C1C0 C3

C5

C2

C6C4 C7

C9C8 C11

C13

C10

C14C12 C15

C17C16 C19

C21

C18

C22C20 C23

C25C24 C27

C29

C26

C30C28 C31

M0

M2

M1

M3S3S2

S1S0

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : affinité mémoire 112

☞ Pour les tableaux, l’allocation réelle de la mémoire se fait à l’exécution, page par
page, lors du premier accès à un élément de ce tableau.

☞ Suivant les caractéristiques des codes (memory bound, CPU bound, accès mémoire
aléatoires, accès mémoire suivant une dimension privilégiée, etc.), il vaut mieux
regrouper tous les threads au sein du même socket (répartition de type compact) ou
au contraire les répartir sur les différents sockets disponibles (répartition de type
scatter).

☞ En général, on essaiera de regrouper sur un même socket des threads qui travaillent
sur les mêmes données partagées.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : stratégie ≪ First Touch ≫ 113

7.3 – Stratégie ≪ First Touch ≫

☞ Pour optimiser l’affinité mémoire dans une application, il est très fortement
recommandé d’implémenter une stratégie de type ≪ First Touch ≫ : chaque thread
va initialiser la partie des données partagées sur lesquelles il va travailler
ultérieurement.

☞ Si les threads sont bindés, on optimise ainsi les accès mémoire en privilégiant la
localité des accès.

☞ Avantage : gains substantiels en terme de performance.

☞ Inconvénient :

➳ aucun gain à escompter avec les scheduling DYNAMIC et GUIDED ou avec la
directive WORKSHARE ...

➳ aucun gain à escompter si la parallélisation utilise le concept des tâches
explicites.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : exemples d’impact sur les performances114

7.4 – Exemples d’impact sur les performances

☞ Code ≪ Memory Bound ≫ s’exécutant avec 4 threads sur des données privées.

program SBP
...
!$OMP PARALLEL PRIVATE(A,B,C)
do i=1,n

A(i) = A(i)*B(i)+C(i)
enddo
!$OMP END PARALLEL
...
end program SBP

> export OMP_NUM_THREADS=4
> export KMP_AFFINITY=compact
> a.out

Temps elapsed = 116 s.

> export OMP_NUM_THREADS=4
> export KMP_AFFINITY=scatter
> a.out

Temps elapsed = 49 s.

☞ Pour optimiser l’utilisation des 4 bus mémoire, il est donc préférable de binder un
thread par socket. Ici le mode scatter est 2.4 fois plus performant que le mode
compact !

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : exemples d’impact sur les performances115
☞ Exemple sans ≪ First Touch ≫

program NoFirstTouch
implicit none
integer, parameter :: n = 30000
integer :: i, j
real, dimension(n,n) :: TAB

! Initialisation de TAB
TAB(1:n,1:n)=1.0

!$OMP PARALLEL
! Calcul sur TAB
!$OMP DO SCHEDULE(STATIC)
do j=1,n

do i=1,n
TAB(i,j)=TAB(i,j)+i+j

enddo
enddo
!$OMP END PARALLEL

end program NoFirstTouch

> export OMP_NUM_THREADS=32 ; a.out

Temps elapsed = 98.35 s.

☞ Exemple avec ≪ First Touch ≫

program FirstTouch
implicit none
integer, parameter :: n = 30000
integer :: i, j
real, dimension(n,n) :: TAB
!$OMP PARALLEL
! Initialisation de TAB
!$OMP DO SCHEDULE(STATIC)
do j=1,n

TAB(1:n,j)=1.0
enddo
! Calcul sur TAB
!$OMP DO SCHEDULE(STATIC)
do j=1,n

do i=1,n
TAB(i,j)=TAB(i,j)+i+j

enddo
enddo
!$OMP END PARALLEL

end program FirstTouch

> export OMP_NUM_THREADS=32 ; a.out

Temps elapsed = 10.22 s.

☞ L’utilisation de la stratégie de type ≪ First Touch ≫ permet un gain de l’ordre d’un
facteur 10 sur cet exemple !

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : exemples d’impact sur les performances116

☞ Code de type ≪ directions alternées ≫ s’exécutant avec 4 threads sur un tableau 2D
partagé, tenant dans le cache L3 d’un socket. C’est un exemple pour lequel il n’y a
pas de localité thread d’exécution/donnée.

➳ Aux itérations paires, chaque thread travaille sur des colonnes du tableau
partagé.

➳ Aux itérations impaires, chaque thread travaille sur des lignes du tableau
partagé.

Itération paire

T0T1T2T3T0 T1T2 ...

Itération impaire

T0

T1

T2

T3

T0

T1

T2
...

☞ La stratégie ≪ First Touch ≫ est utilisée.

☞ On va comparer un binding de type compact avec un binding de type scatter.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

7 – Affinités : exemples d’impact sur les performances117

☞ Binding de type compact

C1C0 C3

C5

C2

C6C4 C7

C9C8 C11

C13

C10

C14C12 C15

C17C16 C19

C21

C18

C22C20 C23

C25C24 C27

C29

C26

C30C28 C31

M0

M2

M1

M3S3S2

S1S0
T0

T1

T2

T3

T0

T1

T2
...

}

> export OMP_NUM_THREADS=4 ; a.out

Temps elapsed = 33.46 s.

☞ Binding de type scatter

C1C0 C3

C5

C2

C6C4 C7

C9C8 C11

C13

C10

C14C12 C15

C17C16 C19

C21

C18

C22C20 C23

C25C24 C27

C29

C26

C30C28 C31

M0

M2

M1

M3S3S2

S1S0
T0

T1

T2

T3

T0

T1

T2
...

> export OMP_NUM_THREADS=4 ; a.out

Temps elapsed = 171.52 s.

☞ Dans cet exemple, le mode compact est plus de 5 fois plus performant que le mode
scatter !

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

8 – Performances 118

8 – Performances

☞ En général, les performances dépendent de l’architecture (processeurs, liens
d’interconnexion et mémoire) de la machine et de l’implémentation OpenMP utilisée.

☞ Il existe, néanmoins, quelques règles de ≪ bonnes performances ≫ indépendantes de
l’architecture.

☞ En phase d’optimisation avec OpenMP, l’objectif sera de réduire le temps de
restitution du code et d’estimer son accélération par rapport à une exécution
séquentielle.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

8 – Performances : règles de bonnes performances 119

8.1 – Règles de bonnes performances

☞ Vérifier que le mécanisme de binding des threads sur les cœurs d’exécution est bien
opérationnel.

☞ Minimiser le nombre de régions parallèles dans le code.

☞ Adapter le nombre de threads demandé à la taille du problème à traiter, afin de
minimiser les surcoûts de gestion des threads par le système.

☞ Dans la mesure du possible, paralléliser la boucle la plus externe.

☞ Utiliser la clause SCHEDULE(RUNTIME) pour pouvoir changer dynamiquement
l’ordonnancement et la taille des paquets d’itérations dans une boucle.

☞ La directive SINGLE et la clause NOWAIT peuvent permettre de baisser le temps de
restitution au prix, le plus souvent, d’une synchronisation explicite.

☞ La directive ATOMIC et la clause REDUCTION sont plus restrictives dans leur usage
mais plus performantes que la directive CRITICAL .

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

8 – Performances : règles de bonnes performances 120

☞ Utiliser la clause IF pour mettre en place
une parallélisation conditionnelle (p. ex. sur
une architecture vectorielle, ne paralléliser
une boucle que si sa longueur est suffisament
grande).

☞ Éviter de paralléliser la boucle faisant
référence à la première dimension des ta-
bleaux (en Fortran) car c’est celle qui fait
référence à des éléments contigus en mémoire.

program parallel
implicit none
integer, parameter :: n=1025
real, dimension(n,n) :: a, b
integer :: i, j

call random_number(a)

! $OMP PARALLEL DO SCHEDULE(RUNTIME)&
!$OMP IF(n.gt.514)

do j = 2, n-1
do i = 1, n

b(i,j) = a(i,j+1) - a(i,j-1)
end do

end do
!$OMP END PARALLEL DO
end program parallel

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

8 – Performances : règles de bonnes performances 121

☞ Les conflits inter-tâches peuvent dégrader sensiblement les performances (conflits de
banc mémoire sur une machine vectorielle ou de défauts de cache sur une machine
scalaire).

☞ Sur les machines de type NUMA, il faut optimiser l’affinité mémoire en utilisant la
stratégie ≪ First Touch ≫.

☞ Indépendamment de l’architecture des machines, la qualité de l’implémentation
OpenMP peut affecter assez sensiblement l’extensibilité des boucles parallèles.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

8 – Performances : mesures du temps 122

8.2 – Mesures du temps

☞ OpenMP offre deux fonctions :

➳ OMP GET WTIME pour mesurer le temps
de restitution en secondes ;

➳ OMP GET WTICK pour connâıtre la
précision des mesures en secondes.

☞ Ce que l’on mesure est le temps écoulé de-
puis un point de référence arbitraire dans le
code.

☞ Cette mesure peut varier d’une exécution à
l’autre selon la charge de la machine et la
répartition des tâches sur les processeurs.

program mat_vect
!$ use OMP_LIB
implicit none
integer,parameter :: n=1025
real,dimension(n,n) :: a
real,dimension(n) :: x, y
real(kind=8) :: t_ref, t_final
integer :: rang
call random_number(a)
call random_number(x) ; y(:)=0.
!$OMP PARALLEL &
! $OMP PRIVATE(rang,t_ref,t_final)
rang = OMP_GET_THREAD_NUM()
t_ref=OMP_GET_WTIME()
call prod_mat_vect(a,x,y,n)
t_final=OMP_GET_WTIME()
print *,"Rang :",rang, &

"; Temps :",t_final-t_ref
!$OMP END PARALLEL

end program mat_vect

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

8 – Performances : accélération 123

8.3 – Accélération

☞ Le gain en performance d’un code parallèle est
estimé par rapport à une exécution séquentielle.

☞ Le rapport entre le temps séquentiel Ts et le
temps parallèle Tp sur une machine dédiée est
déjà un bon indicateur sur le gain en perfor-
mance. Celui-ci définit l’accélération S(Nt) du
code qui dépend du nombre de tâches Nt.

☞ Si l’on considère Ts = ts + tp = 1 (ts représente
le temps relatif à la partie séquentielle et tp ce-
lui relatif à la partie parallélisable du code), la
loi dite de ≪ Amdhal ≫ S(Nt) = 1

ts+
tp

Nt

in-

dique que l’accélération S(Nt) est majorée par
la fraction séquentielle 1

ts
du programme.

ts

ts

tp+ = 1

S(Nt) =
1

tp/Nt tp

Nt
ts +

0 64 128 192 256Nt

0

64

128

192

256

S(Nt)

ts=0,3%

ts=0,2%

ts=0,1%

ts=0%

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

9 – Conclusion 124

9 – Conclusion

☞ Nécessite une machine multi-processeurs à mémoire partagée.

☞ Mise en œuvre relativement facile, même dans un programme à l’origine séquentiel.

☞ Permet la parallélisation progressive d’un programme séquentiel.

☞ Tout le potentiel des performances parallèles se trouve dans les régions parallèles.

☞ Au sein de ces régions parallèles, le travail peut être partagé grâce aux boucles, aux
sections parallèles et aux tâches. Mais on peut aussi singulariser un thread pour un
travail particulier.

☞ Les directives orphelines permettent de développer des procédures parallèles.

☞ Des synchronisations explicites globales ou point à point sont parfois nécessaires
dans les régions parallèles.

☞ Un soin tout particulier doit être apporté à la définition du statut des variables
utilisées dans une construction.

☞ L’accélération mesure l’extensibilité d’un code. Elle est majorée par la fraction
séquentielle du programme et est ralentie par les surcoûts liés à la gestion des
tâches.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

10 – Annexes : parties non abordées ici 125

10 – Annexes

10.1 – Parties non abordées ici

Ce que nous n’avons pas (ou que peu) traité dans ce cours :

☞ les procédures ≪ verrou ≫ pour la synchronisation point à point ;

☞ d’autres sous-programmes de service ;

☞ la parallélisation mixte MPI & OpenMP ;

☞ les apports d’OpenMP 4.0 relatifs à l’utilisation des accélérateurs.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

10 – Annexes : quelques pièges 126

10.2 – Quelques pièges

☞ Dans le première exemple ci-contre, le
statut de la variable ≪ s ≫ est erroné
ce qui produit un résultat indéterminé.
En effet, le statut de ≪ s ≫ doit être
SHARED dans l’étendue lexicale de la
région parallèle si la clause LASTPRIVATE
est spécifiée dans la directive DO (ce n’est
pas la seule clause dans ce cas là). Ici, les
deux implémentations, IBM et NEC, four-
nissent deux résultats différents. Pour-
tant, ni l’une ni l’autre n’est en contra-
diction avec la norme alors qu’un seul
des résultats est correct.

program faux_1
...
real :: s
real, dimension(9) :: a
a(:) = 92290.
! $OMP PARALLEL DEFAULT(PRIVATE) &

!$OMP SHARED(a)
!$OMP DO LASTPRIVATE(s)

do i = 1, n
s = a(i)

end do
!$OMP END DO
print *, "s=",s,"; a(9)=",a(n)

!$OMP END PARALLEL
end program faux_1

IBM SP> export OMP_NUM_THREADS=3;a.out
s=92290. ; a(9)=92290.
s=0. ; a(9)=92290.
s=0. ; a(9)=92290.

NEC SX-5> export OMP_NUM_THREADS=3;a.out
s=92290. ; a(9)=92290.
s=92290. ; a(9)=92290.
s=92290. ; a(9)=92290.

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

10 – Annexes : quelques pièges 127

☞ Dans le second exemple ci-contre, il
se produit un effet de course entre
les tâches qui fait que l’instruction
≪ print ≫ n’imprime pas le résultat es-
compté de la variable ≪ s ≫ dont le sta-
tut est SHARED . Il se trouve ici que NEC et
IBM fournissent des résultats identiques,
mais il est possible et légitime d’obtenir
un résultat différent sur une autre plate-
forme. Une solution est de glisser, par
exemple, une directive BARRIER juste
après l’instruction ≪ print ≫.

program faux_2
implicit none
real :: s
! $OMP PARALLEL DEFAULT(NONE) &

!$OMP SHARED(s)
!$OMP SINGLE
s=1.
!$OMP END SINGLE
print *,"s = ",s
s=2.
!$OMP END PARALLEL

end program faux_2

IBM SP> export OMP_NUM_THREADS=3;a.out
s = 1.0
s = 2.0
s = 2.0

NEC SX-5> export OMP_NUM_THREADS=3;a.out
s = 1.0
s = 2.0
s = 2.0

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

10 – Annexes : quelques pièges 128

☞ Dans le troisième exemple ci-contre, il
peut se produire un blocage de type
≪ deadlock ≫ dû à une désynchronisation
entre les tâches (une tâche ayant du re-
tard peut sortir de la boucle, alors que
les autres tâches ayant de l’avance at-
tendent indéfiniment sur la barrière im-
plicite de la construction SINGLE). La
solution consiste à rajouter une barrière,
soit avant la construction SINGLE , soit
après le test ≪ if ≫.

program faux_3
implicit none
integer :: iteration=0

!$OMP PARALLEL
do

!$OMP SINGLE
iteration = iteration + 1
!$OMP END SINGLE
if(iteration >= 3) exit

end do
!$OMP END PARALLEL
print *,"Outside // region"

end program faux_3

Intel> export OMP_NUM_THREADS=3;a.out
... rien ne s’affiche à l’écran ...

INSTITUT DU DÉVELOPPEMENT
ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.10 – Octobre 2020
R. Lacroix & T. Véry

	Introduction
	Historique
	Spécifications OpenMP
	Terminologie et définitions
	Concepts généraux
	Modèle d'exécution
	Processus légers (threads)

	Fonctionnalités
	OpenMP versus MPI
	Bibliographie

	Principes
	Interface de programmation
	Syntaxe générale d'une directive
	Compilation

	Construction d'une région parallèle
	Statut des variables
	Variables privées
	La clause DEFAULT
	Variables statiques
	Allocation dynamique
	Équivalence entre variables Fortran

	Étendue d'une région parallèle
	Transmission par arguments
	Compléments

	Partage du travail
	Introduction
	Boucle parallèle
	Clause SCHEDULE
	Cas d'une exécution ordonnée
	Cas d'une réduction
	Cas de la fusion d'un nid de boucles
	Compléments

	Construction WORKSHARE
	Sections parallèles
	Construction SECTIONS
	Compléments

	Exécution exclusive
	Construction SINGLE
	Construction MASTER

	Procédures orphelines
	Récapitulatif

	Synchronisations
	Barrière
	Mise à jour atomique
	Régions critiques
	Directive FLUSH
	Exemple avec un piège facile
	Exemple avec un piège difficile
	Commentaires sur les codes précédents
	Code corrigé
	Nid de boucles avec double dépendance

	Récapitulatif

	Vectorisation SIMD
	Introduction
	Vectorisation SIMD d'une boucle
	Parallélisation et vectorisation SIMD d'une boucle
	Vectorisation SIMD de fonctions scalaires

	Les tâches OpenMP
	Introduction
	Les bases du concept
	Le modèle d'exécution des tâches
	Quelques exemples
	Dépendance entre tâches
	Statut des variables dans les tâches
	Exemple de MAJ des éléments d'une liste chaînée
	Exemple d'algorithme récursif
	Clauses FINAL et MERGEABLE
	Synchronisation de type TASKGROUP

	Affinités
	Affinité des threads
	Commande cpuinfo
	Utilisation de la variable d'environnement KMP_AFFINITY
	Affinité des threads avec OpenMP 4.0

	Affinité mémoire
	Stratégie « First Touch »
	Exemples d'impact sur les performances

	Performances
	Règles de bonnes performances
	Mesures du temps
	Accélération

	Conclusion
	Annexes
	Parties non abordées ici
	Quelques pièges

