BliS

1 Environnement

integer :: code

ViEaigY (<OUT> code)

integer :: comm, rang, code

U OVIVMINIY (<IN> comm, <OUT> rang, <OUT> code)
integer :: comm, nb_procs, code

VISP (<IN> comm, <OUT> nb_procs, <0UT> code)
integer :: code

U NE¥AD (<OUT> code)

integer :: comm, error, code

ViAWV (<IN> comm, <IN> error, <OUT> code)

real(kind=8) :: temps
temps=\UTIEI ()

2 Communications point a point

<type et attribut>:: message

integer :: longueur, type, rang_dest
integer :: etiquette, comm, code
[MPI_SENDI

<IN> message,

<IN> longueur,

<IN> type,
<IN> rang_dest,
<IN> etiquette,
<IN> comm,
<OUT> code)

<type et attribut>:: message

integer :: longueur, type, rang_dest
integer :: etiquette, comm, requete, code
MPT_TSEND[(

<IN> message,

<IN> longueur,

<IN> type,

<IN> rang_dest,
<IN> etiquette,
<IN> comm,
<0UuT> requete,
<OUT> code)

<type et attribut>:: message

integer :: longueur, type, rang_source
integer :: etiquette, comm, code
integer, dimension ([UFREIVENEREAS) :: statut
MPI_RECV[¢

<0UT> message,

<IN> longueur,

<IN> type,

<IN> rang_source,

<IN> etiquette,

<IN> comm,

<0UT> statut,
<0UT> code)

<type et attribut>:: message

integer :: longueur, type, rang_source
integer :: etiquette, comm, requete, code
MPI_TRECV[¢

Aide mémoire

<0UT> message,

<IN> longueur,
<IN> type,

<IN> rang_source,
<IN> etiquette,
<IN> comm,

<0UT> requete,
<OUT> code)

<type et attribut>:: message_emis, message_recu

integer :: longueur_message_emis, type_message_emis
integer :: etiquette_message_emis, etiquette_message_recu
integer :: longueur_message_recu, type_message_recu
integer :: rang_source, rang_dest, comm, code

integer, dimension ([UFNEIVENEREIAD) :: statut
MPI_SENDRECV[¢

<IN> message_emis,

<IN> longueur_message_emis,
<IN> type_message_emis,

<IN> rang_dest,

<IN> etiquette_message_emis,
<0uT> message_recu,

<IN> longueur_message_recu,
<IN> type_message_recu,

<IN> rang_source,

<IN> etiquette_message_recu,
<IN> comm,

<0UT> statut,
<0UT> code)

<type et attribut>:: message_emis_recu

integer :: longueur, type, rang_dest, rang_source
integer :: etiquette_message_emis, etiquette_message_recu
integer :: comm, code

integer, dimension ([UFNEIVINIENEIVAY) :: statut
MPI_SENDRECV_REPLACE[(

<INOUT> message_emis_recu,

<IN> longueur,
<IN> type,
<IN> rang_dest,
<IN> etiquette_message_emis,
<IN> rang_source,
<IN> etiquette_message_recu,
<IN> comm,
<0uUT> statut,
<0UT> code)
integer :: requete, code

integer, dimension ([UFNEIVENEREIAY) :: statut
AN (<IN> requete, <OUT> statut, <OUT> code)
integer :: requete, code

logical :: drapeau
integer, dimension ([IFMEIVNIEEEIWAS) :: statut
MPI_TESTI

<IN> requete,
<0uT> drapeau,
<0UT> statut,
<0UT> code)

integer :: rang_source, etiquette, comm, code
integer, dimension ([UFNEIVENEREIAY) :: statut
MPI_PROBE[(

<IN> rang_source,
<IN> etiquette,
<IN> comm,

<0UT> statut,
<0UT> code)

integer :: requete, code

VIR IIFd (<IN> requete, <OUT> code)

MPI en Fortran

3 Communications collectives

<type et attribut>:: message
integer :: longueur, type, rang_source, comm, code

IMPI_BCAST ¢
<INOUT> messsage,

<IN> longueur,

<IN> type,

<IN> rang_source,

<IN> comm,

<0UT> code)
<type et attribut>:: message_emis, message_collecte
integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: rang_dest, comm, code
MPI_GATHER[¢

<IN> message_emis,

<IN> longueur_message_emis,

<IN> type_messa§e_emis,

<0uT> message_collecte,

<IN> longueur_message_recu,

<IN> type_message_recu,

<IN> rang_dest,

<IN> comm,

<0UT> code)

<type et attribut>:: message_a_repartir, message_recu

integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: rang_source, comm, code
MPI_SCATTERI[(

<IN> message_a_repartir,

<IN> longueur_message_emis,

<IN> type_message_emis,

<0UT> message_recu,

<IN> longueur_message_recu,

<IN> type_message_recu,

<IN> rang_source,

<IN> comm,

<0UT> code)

<type et attribut>:: message_a_repartir, message_recu

integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: comm, code
MPI_ALLGATHER[(

<IN> message_emis,

<IN> longueur_message_emis,

<IN> type_messa%e_emis,

<0uT> message_collecte,

<IN> longueur_message_recu,

<IN> type_message_recu,

<IN> comm,

<0UT> code)

<type et attribut>:: message_a_repartir, message_collecte

integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: comm, code
MPI_ALLTOALL[(

<IN> message_a_repartir,

<IN> longueur_message_emis,

<IN> type_messa%e_emis,

<0UT> message_collecte,

<IN> longueur_message_recu,

<IN> type_message_recu,

<IN> comm,

<OUT> code)

Version 4.5 — 25 septembre 2013

<type et attribut>:: message_emis, message_recu

integer ::
integer ::

longueur, type, rang_dest
operation, comm, code

MPI_REDUCE[¢

<IN> message_emis,
<0uT> message_recu,
<IN> longueur,

<IN> type,

<IN> operation,

<IN> rang_dest,

<IN> comm,

<0UT> code)

operation = [UZWUVY | MZWNY] | MZWEU | M3WIAD] |

MPT_BANDNWIVMPT_BOR|MMMPT_BXOR JMPI_LAND
MPI_LORJNMMPI_LXOR

<type et attribut>:: message_emis, message_recu

integer ::

longueur, type, operation, comm, code

MPI_ALLREDUCE](

integer ::

<IN> message_emis,
<0uT> message_recu,
<IN> longueur,
<IN> type,

<IN> operation,
<IN> comm,

<OUT> code)

comm, code

VinINI RIS (<IN> comm, <OUT> code)

4 Types dérivés

integer ::

nb_elements, ancien_type, nouveau_type, code

MPI_TYPE_CONTIGUOUSI|¢

integer ::
integer ::

<IN> nb_elements,
<IN> ancien_type,
<0UT> nouveau_type,
<OUT> code)

nb_elements, longueur_bloc
pas, ancien_type, nouveau_type, code

MPI_TYPE_VECTOR[(

integer ::

<IN> nb_elements,
<IN> longueur_bloc,
<IN> pas,

<IN> ancien_type,
<0UT> nouveau_type,
<O0UT> code)

nb_elements,longueur_bloc

integer ([UATNNNIEENEIND :: pas

integer ::

ancien_type, nouveau_type, code

MPI_TYPE_CREATE_HVECTOR[¢

integer ::
integer,
integer ::

<IN> nb_elements,
<IN> longueur_bloc,
<IN> pas,

<IN> ancien_type,
<0UT> nouveau_type,
<O0UT> code)

nb_elements, code
dimension(nb_elements) :: longueur_bloc, pas
ancien_type, nouveau_type

MPI_TYPE_INDEXED][(

integer ::
integer ::
integer,

<IN> nb_elements,
<IN> longueur_bloc,
<IN> pas,

<IN> ancien_type,
<0UT> nouveau_type,
<O0UT> code)

nb_dims, adresse_debut, ordre
ancien_type, nouveau_type, code
dimension(nb_dims) :: profil_tab, profil_sous_tab

integer, dimension(nb_dims) :: adresse_debut

MPI_TYPE_CREATE_SUBARRAY [¢

<IN> nb_dims,
<IN> profil_tab,
<IN> profil_sous_tab,
<IN> adresse_debut,
<IN> ordre,
<IN> ancien_type,
<0UT> nouveau_type,
<0UT> code)
integer :: nb_elements, nouveau_type, code

integer, dimension(nb_elements) :: longueur_bloc
integer ([AMNIFEEMEND)) ,dimension(nb_elements) :: pas
integer, dimension(nb_elements) :: ancien_types
MPI_TYPE_CREATE_STRUCT [

<IN> nb_elements,

<IN> longueur_bloc,

<IN> pas,

<IN> ancien_types,

<0UT> nouveau_type,

<0UT> code)

integer :: type, code
VISl (<IN> type, <O0UT> code)
integer :: type, code
VIZINSIIMYINY (<IN> type, <O0UT> code)
integer :: type, code
integer ([N INIINERD])
integer (IINVIEEINENND])
MPI_TYPE_GET_EXTENT[(

<IN> type,

<0UT> Zorne_inf_alignee,
<0UT> taille_alignee,
<0UT> code)

:: borne_inf_alignee
: taille_alignee

integer :: ancien_type, nouveau_type, code
integer ([UEIBVNNHFEENEND]) :: nouvelle_borne_inf
integer ([UIATINNIEENEIND :: nouvelle_taille
MPI_TYPE_CREATE_RESIZED[(
<IN> ancien_tyge,
<IN> nouvelle_borne_inf,
<IN> nouvelle_taille,
<0UT> nouveau_type,
<0UT> code)

integer :: type, taille, code
VNI MSIAY (<IN> type, <OUT> taille, <OUT> code)
integer :: position, code

integer ([UZMNDIEEWEIB) :: adresse
[UIE WIS (<IN> position, <O0UT> adresse, <0UT> code)

5 Communicateur

integer :: comm, nb_dims, nouveau_comm, code
integer, dimension(nb_dims) :: dims

logical :: periodique, reorganise
MPI_CART_CREATE[(
<IN> comm,
<IN> nb_dims,
<IN> dims,
<IN> periodique,
<IN> reorganise,
<0UT> nouveau_comm,
<OUT> code)
integer :: nb_procs, nb_dims, code

integer, dimension(nb_dims) :: dims

MPI_DIMS_CREATE[(

<IN> nb_procs,
<IN> nb_dims,
<INOUT> dims,
<0UT> code)

integer :: comm,

integer, dimension(nb_dims)

MPI_CART_RANK](

rang, code, nb_dims
coords

<IN> comm,

<IN> coords,

<0UT> rang,

<0UT> code)
integer :: comm, rang, nb_dims, code
integer, dimension(nb_dims) coords

PI_CART_COORDSIS

<IN> comm,

<IN> rani,

<IN> nb_dims,

<0UT> coords,

<0UT> code)
integer :: comm, direction, sens
integer :: rang_source, rang_dest, code
MPI_CART_SHIFTI|(

<IN> comm,

<IN> direction,

<IN> pas,

<0UuT> rang_source,

<0UT> rang_dest,

<0UT> code)
integer :: comm, comm_sub, code, nb_dims

logical, dimension(nb_dims)

[MPI_CART_SUBI¢
<IN>
<IN>
<0UT>
<0UT>

integer ::

integer ::

[MPT_COMM_SPLIT](
<IN>
<IN>
<IN>
<0UT>
<0UT>

comm,

integer :: comm,

:: dim_sub

comm,
dim_sub,
comm_sub,
code)

couleur, cle

nouveau_comm, code

comm,
couleur,

cle,
nouveau_comm,
code)

code

ViV IAY (<IN> comm, <OUT> code)

6 MPI-IO

integer :: comm,
character (len=x)
PI_FILE_OPEN[(

<IN>
<IN>
<IN>
<IN>
<0UT>
<0UT>

integer ::

MPI_FILE_CLOSE[(
<INOUT>
<0UT>

integer ::

integer (kind=[UIZMIFIHFIMENH])

character (len=%)

attribut, info, descripteur,
: fichier

comm,
fichier,
attribut,
info,
descripteur,
code)

descripteur, code

descripteur,
code)

:: mode

MPI_FILE SET_VIEW[¢

<INOUT>
<IN>
<IN>
<IN>
<IN>
<IN>
<0UT>

descripteur,
deplacement_initial,
type_derive,

motif,

mode,

info,

code)

code

descripteur, type_derive, motif, info, code
: deplacement_initial

integer :: descripteur, mode_seek, code MPI_FILE_WRITE_ALLJ(integer :: descripteur, mode_seek, code
integer (kind=[UZMIFTIHWENP) :: position_fichier <IN> descripteur, integer (kind=|UFMUIFIHWEID) :: position_fichier
MPI_FILE_SEEK[Y SuT> valeurs, MPI_FILE_SEEK_SHAREDNY
<INOUT> descripteur, = 202 <INOUT> descripteur,
<IN> Tt fichi <IN> type_derive, <IN> Tt fichi
e pO(Sil 1onE ichier, <QUT> statut, e pogl 1onE ichier,
mode_seek, <QUT> code) mode_seek,
<0UT> code) <0UT> code)
integer :: descripteur, nb_valeurs, type_derive, requete) .))
integer :: descripteur, nb_valeurs, type_derive, requete integer :: code integer o deggrlptgl.lr, ;b_valeurs, type_derive, code
integer :: code integer (kind=[ZMUFFIHMENN)) :: position_fichier <type et attributs>:: valeurs
<type et attributs>:: valeurs <type et attributs>:: valeurs integer, dimension (IIFMEHVINIEMERFAT) :: statut
MPT_FILE_IREAD[¢ MPI_FILE_IREAD_AT] MPI_FILE_READ_SHAREDIS
<IN> descripteur, <IN> descripteur, :[I]II\},;> deicrlpteur,
<0UT> valeurs, <IN> position_fichier, <In> V% eui's,
<IN> nb_valeurs, <0UT> valeurs, <IN g _vadeuzjs,
<IN> type_derive, <IN> nb_valeurs, 0UT> ype_derive,
<0UT> requete, <IN> type_derive, statut,
<0UT> code) <0UT> requete, <0UT> code)
- . . <0UT> code) integer :: descripteur, nb_valeurs, type_derive, code
integer :: descripteur, nb_valeurs, type_derive, code integer :: descripteur, nb_valeurs, type_derive, code <type et attributs>:: valeurs
<type et attributs>:: valeurs integer (kind=UIZMUIFIHMEIND)) :: position_fichier integer, dimension (UIZMEFVENIENEIPAY) :: statut
integer, dimension (IMEFVNIENEIVAY) :: statut <type et attributs>:: valeurs MPI_FILE_READ_ORDERED[{
MPI_FILE_AD (a integer, dimension ([IZMEIVEIENEIFAS) :: statut [I]{\II'; deicripteur s
<IN> escripteur, MPI_FILE_READ_AT]|¢ < > valeurs,
<0UT> valeurs - = - : <IN> nb_valeurs
> <IN> descripteur, iy e
S momlein, <> posivibn ficnier, A, Hmggierive.
OUT> siatat ’ <OUT> valeurs, <0UT> de)
Privig RN <IN> nb_valeurs, coae
coae <IN> type_derive, . . .
<0UT> statut, integer :: de§cr1pteur, nb_valeurs, type_derive, code
integer :: descripteur, nb_valeurs, type_derive, code <OUT> code) <type et attributs>:: valeurs
<type et attributs>:: valeurs int d it b val £ deri d MPI_FILE_READ_ORDERED_BEGIN[S
. . . integer :: descripteur, nb_valeurs, type_derive, code <IN> descripteur
) = X X I o P ,
e nn(() statut integer (kind=[UZMIFTIHWENDD :: position_fichier <0UT> valeurs,
scri tour <type et attributs>:: valeurs :IN; nb_valeurs,
OUT> valeurs. o’ integer, dimension ([IFMEIVVIEMEIFA) :: statut o> JBejderive,
<IN> nb_valeurs, MPI_FILE_READ_AT_ALLJ(
:6{\}%> g%'ggﬁgerive, i%gi dest;iiptelfllr,h. integer :: descripteur, code
QOUT> code) <OUT> 52?;11;211— ichier, <type et attributs>:: valeurs
<IN> nb_valeurs, integer, dimension ([IZMEIVEIEEEIFAS) :: statut
. . . . <IN> type_derive, MPI_FILE_READ_ORDERED_END]
integer :: de;crlpteur, nb_valeurs, type_derive, code <0UT> statut, <IN> descripteur,
<type et attributs>:: valeurs <0UT> code) <0UT> valeurs,
integer, dimension (VMEIVVIEEEIVAY) :: statut . . . <0UT> statut,
MPI_FILE_WRITE[(integer :: descripteur, nb_valeurs, type_derive, code <0UT> code)
<IN> descripteur, integer (kind=[VIZMUIFIHWEIND]) :: position_fichier
<0QUT> valeurs, <type et attributs>:: valeurs .
N> mb_valeurs, integer, dimension ([ZMEIYVIENEIFAT) :: statut 7 Constantes symbohques
OUT> eibraeorives MPI_FILE_WRITE_AT[(
<OUT> code) :%g; dg:g};;ggegéhier MPI_ANY_TAGNMPI_ANY_SOURCENEMPI_SUCCESSHMMPI_STATUS_IGNORE
<IN> galeurs,_ ’ MPI_CHARACTERQMPI_LOGICALQEVMPI_INTEGERA
integer :: descripteur, nb_valeurs, type_derive, code <IN> nb_valeurs, MPI_REALMMMPI_DOUBLE_PRECISIONMMPI_COMPLEXN
<type et attributs>:: valeurs ELI)II\}% type_derive, [MPT_COMM_NULLJJIMPI_COMM_WORLDJ
integer, dimension ([AMSIVEIEMEL#E) :: statut <O0UT> iggg‘)lt MPI_PROC_NULL|MMPI_STATUS_SIZEMMPI_UNDEFINED

