
Aide mémoire MPI en Fortran Version 4.5 – 25 septembre 2013

1 Environnement
integer :: code
MPI_INIT(<OUT> code)

integer :: comm, rang, code
MPI_COMM_RANK(<IN> comm, <OUT> rang, <OUT> code)

integer :: comm, nb_procs, code
MPI_COMM_SIZE(<IN> comm, <OUT> nb_procs, <OUT> code)

integer :: code
MPI_FINALIZE(<OUT> code)

integer :: comm, error, code
MPI_ABORT(<IN> comm, <IN> error, <OUT> code)

real(kind=8) :: temps
temps=MPI_WTIME()

2 Communications point à point

<type et attribut>:: message
integer :: longueur, type, rang_dest
integer :: etiquette, comm, code
MPI_SEND(

<IN> message,
<IN> longueur,
<IN> type,
<IN> rang_dest,
<IN> etiquette,
<IN> comm,
<OUT> code)

<type et attribut>:: message
integer :: longueur, type, rang_dest
integer :: etiquette, comm, requete, code
MPI_ISEND(

<IN> message,
<IN> longueur,
<IN> type,
<IN> rang_dest,
<IN> etiquette,
<IN> comm,
<OUT> requete,
<OUT> code)

<type et attribut>:: message
integer :: longueur, type, rang_source
integer :: etiquette, comm, code
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_RECV(

<OUT> message,
<IN> longueur,
<IN> type,
<IN> rang_source,
<IN> etiquette,
<IN> comm,
<OUT> statut,
<OUT> code)

<type et attribut>:: message
integer :: longueur, type, rang_source
integer :: etiquette, comm, requete, code
MPI_IRECV(

<OUT> message,
<IN> longueur,
<IN> type,
<IN> rang_source,
<IN> etiquette,
<IN> comm,
<OUT> requete,
<OUT> code)

<type et attribut>:: message_emis, message_recu
integer :: longueur_message_emis, type_message_emis
integer :: etiquette_message_emis, etiquette_message_recu
integer :: longueur_message_recu, type_message_recu
integer :: rang_source, rang_dest, comm, code
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_SENDRECV(

<IN> message_emis,
<IN> longueur_message_emis,
<IN> type_message_emis,
<IN> rang_dest,
<IN> etiquette_message_emis,
<OUT> message_recu,
<IN> longueur_message_recu,
<IN> type_message_recu,
<IN> rang_source,
<IN> etiquette_message_recu,
<IN> comm,
<OUT> statut,
<OUT> code)

<type et attribut>:: message_emis_recu
integer :: longueur, type, rang_dest, rang_source
integer :: etiquette_message_emis, etiquette_message_recu
integer :: comm, code
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_SENDRECV_REPLACE(

<INOUT> message_emis_recu,
<IN> longueur,
<IN> type,
<IN> rang_dest,
<IN> etiquette_message_emis,
<IN> rang_source,
<IN> etiquette_message_recu,
<IN> comm,
<OUT> statut,
<OUT> code)

integer :: requete, code
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_WAIT(<IN> requete, <OUT> statut, <OUT> code)
integer :: requete, code

logical :: drapeau
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_TEST(

<IN> requete,
<OUT> drapeau,
<OUT> statut,
<OUT> code)

integer :: rang_source, etiquette, comm, code
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_PROBE(

<IN> rang_source,
<IN> etiquette,
<IN> comm,
<OUT> statut,
<OUT> code)

integer :: requete, code
MPI_REQUEST_FREE(<IN> requete, <OUT> code)

3 Communications collectives
<type et attribut>:: message
integer :: longueur, type, rang_source, comm, code
MPI_BCAST(

<INOUT> messsage,
<IN> longueur,
<IN> type,
<IN> rang_source,
<IN> comm,
<OUT> code)

<type et attribut>:: message_emis, message_collecte
integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: rang_dest, comm, code
MPI_GATHER(

<IN> message_emis,
<IN> longueur_message_emis,
<IN> type_message_emis,
<OUT> message_collecte,
<IN> longueur_message_recu,
<IN> type_message_recu,
<IN> rang_dest,
<IN> comm,
<OUT> code)

<type et attribut>:: message_a_repartir, message_recu
integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: rang_source, comm, code
MPI_SCATTER(

<IN> message_a_repartir,
<IN> longueur_message_emis,
<IN> type_message_emis,
<OUT> message_recu,
<IN> longueur_message_recu,
<IN> type_message_recu,
<IN> rang_source,
<IN> comm,
<OUT> code)

<type et attribut>:: message_a_repartir, message_recu
integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: comm, code
MPI_ALLGATHER(

<IN> message_emis,
<IN> longueur_message_emis,
<IN> type_message_emis,
<OUT> message_collecte,
<IN> longueur_message_recu,
<IN> type_message_recu,
<IN> comm,
<OUT> code)

<type et attribut>:: message_a_repartir, message_collecte
integer :: longueur_message_emis, longueur_message_recu
integer :: type_message_emis, type_message_recu
integer :: comm, code
MPI_ALLTOALL(

<IN> message_a_repartir,
<IN> longueur_message_emis,
<IN> type_message_emis,
<OUT> message_collecte,
<IN> longueur_message_recu,
<IN> type_message_recu,
<IN> comm,
<OUT> code)

<type et attribut>:: message_emis, message_recu
integer :: longueur, type, rang_dest
integer :: operation, comm, code
MPI_REDUCE(

<IN> message_emis,
<OUT> message_recu,
<IN> longueur,
<IN> type,
<IN> operation,
<IN> rang_dest,
<IN> comm,
<OUT> code)

operation ≡ MPI_MAX | MPI_MIN | MPI_SUM | MPI_PROD |
MPI_BAND | MPI_BOR | MPI_BXOR | MPI_LAND |
MPI_LOR | MPI_LXOR

<type et attribut>:: message_emis, message_recu
integer :: longueur, type, operation, comm, code
MPI_ALLREDUCE(

<IN> message_emis,
<OUT> message_recu,
<IN> longueur,
<IN> type,
<IN> operation,
<IN> comm,
<OUT> code)

integer :: comm, code
MPI_BARRIER(<IN> comm, <OUT> code)

4 Types dérivés

integer :: nb_elements, ancien_type, nouveau_type, code
MPI_TYPE_CONTIGUOUS(

<IN> nb_elements,
<IN> ancien_type,
<OUT> nouveau_type,
<OUT> code)

integer :: nb_elements, longueur_bloc
integer :: pas, ancien_type, nouveau_type, code
MPI_TYPE_VECTOR(

<IN> nb_elements,
<IN> longueur_bloc,
<IN> pas,
<IN> ancien_type,
<OUT> nouveau_type,
<OUT> code)

integer :: nb_elements,longueur_bloc
integer(MPI_ADDRESS_KIND) :: pas
integer :: ancien_type, nouveau_type, code
MPI_TYPE_CREATE_HVECTOR(

<IN> nb_elements,
<IN> longueur_bloc,
<IN> pas,
<IN> ancien_type,
<OUT> nouveau_type,
<OUT> code)

integer :: nb_elements, code
integer, dimension(nb_elements) :: longueur_bloc, pas
integer :: ancien_type, nouveau_type
MPI_TYPE_INDEXED(

<IN> nb_elements,
<IN> longueur_bloc,
<IN> pas,
<IN> ancien_type,
<OUT> nouveau_type,
<OUT> code)

integer :: nb_dims, adresse_debut, ordre
integer :: ancien_type, nouveau_type, code
integer, dimension(nb_dims) :: profil_tab, profil_sous_tab

integer, dimension(nb_dims) :: adresse_debut
MPI_TYPE_CREATE_SUBARRAY(

<IN> nb_dims,
<IN> profil_tab,
<IN> profil_sous_tab,
<IN> adresse_debut,
<IN> ordre,
<IN> ancien_type,
<OUT> nouveau_type,
<OUT> code)

integer :: nb_elements, nouveau_type, code
integer, dimension(nb_elements) :: longueur_bloc
integer(MPI_ADDRESS_KIND),dimension(nb_elements) :: pas
integer, dimension(nb_elements) :: ancien_types
MPI_TYPE_CREATE_STRUCT(

<IN> nb_elements,
<IN> longueur_bloc,
<IN> pas,
<IN> ancien_types,
<OUT> nouveau_type,
<OUT> code)

integer :: type, code
MPI_TYPE_COMMIT(<IN> type, <OUT> code)

integer :: type, code
MPI_TYPE_FREE(<IN> type, <OUT> code)

integer :: type, code
integer(MPI_ADDRESS_KIND) :: borne_inf_alignee
integer(MPI_ADDRESS_KIND) :: taille_alignee
MPI_TYPE_GET_EXTENT(

<IN> type,
<OUT> borne_inf_alignee,
<OUT> taille_alignee,
<OUT> code)

integer :: ancien_type, nouveau_type, code
integer(MPI_ADDRESS_KIND) :: nouvelle_borne_inf
integer(MPI_ADDRESS_KIND) :: nouvelle_taille
MPI_TYPE_CREATE_RESIZED(

<IN> ancien_type,
<IN> nouvelle_borne_inf,
<IN> nouvelle_taille,
<OUT> nouveau_type,
<OUT> code)

integer :: type, taille, code
MPI_TYPE_SIZE(<IN> type, <OUT> taille, <OUT> code)

integer :: position, code
integer(MPI_ADDRESS_KIND) :: adresse
MPI_GET_ADDRESS(<IN> position, <OUT> adresse, <OUT> code)

5 Communicateur
integer :: comm, nb_dims, nouveau_comm, code
integer, dimension(nb_dims) :: dims
logical :: periodique, reorganise
MPI_CART_CREATE(

<IN> comm,
<IN> nb_dims,
<IN> dims,
<IN> periodique,
<IN> reorganise,
<OUT> nouveau_comm,
<OUT> code)

integer :: nb_procs, nb_dims, code
integer, dimension(nb_dims) :: dims
MPI_DIMS_CREATE(

<IN> nb_procs,
<IN> nb_dims,
<INOUT> dims,
<OUT> code)

integer :: comm, rang, code, nb_dims
integer, dimension(nb_dims) :: coords
MPI_CART_RANK(

<IN> comm,
<IN> coords,
<OUT> rang,
<OUT> code)

integer :: comm, rang, nb_dims, code
integer, dimension(nb_dims) :: coords
MPI_CART_COORDS(

<IN> comm,
<IN> rang,
<IN> nb_dims,
<OUT> coords,
<OUT> code)

integer :: comm, direction, sens
integer :: rang_source, rang_dest, code
MPI_CART_SHIFT(

<IN> comm,
<IN> direction,
<IN> pas,
<OUT> rang_source,
<OUT> rang_dest,
<OUT> code)

integer :: comm, comm_sub, code, nb_dims
logical, dimension(nb_dims) :: dim_sub
MPI_CART_SUB(

<IN> comm,
<IN> dim_sub,
<OUT> comm_sub,
<OUT> code)

integer :: comm, couleur, cle
integer :: nouveau_comm, code
MPI_COMM_SPLIT(

<IN> comm,
<IN> couleur,
<IN> cle,
<OUT> nouveau_comm,
<OUT> code)

integer :: comm, code
MPI_COMM_FREE(<IN> comm, <OUT> code)

6 MPI-IO
integer :: comm, attribut, info, descripteur, code
character(len=*) :: fichier
MPI_FILE_OPEN(

<IN> comm,
<IN> fichier,
<IN> attribut,
<IN> info,
<OUT> descripteur,
<OUT> code)

integer :: descripteur, code
MPI_FILE_CLOSE(

<INOUT> descripteur,
<OUT> code)

integer :: descripteur, type_derive, motif, info, code
integer(kind=MPI_OFFSET_KIND) :: deplacement_initial
character(len=*) :: mode
MPI_FILE_SET_VIEW(

<INOUT> descripteur,
<IN> deplacement_initial,
<IN> type_derive,
<IN> motif,
<IN> mode,
<IN> info,
<OUT> code)

integer :: descripteur, mode_seek, code
integer(kind=MPI_OFFSET_KIND) :: position_fichier
MPI_FILE_SEEK(

<INOUT> descripteur,
<IN> position_fichier,
<IN> mode_seek,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, requete
integer :: code
<type et attributs>:: valeurs
MPI_FILE_IREAD(

<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> requete,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_READ(

<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_READ_ALL(

<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_WRITE(

<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut

MPI_FILE_WRITE_ALL(
<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, requete
integer :: code
integer(kind=MPI_OFFSET_KIND) :: position_fichier
<type et attributs>:: valeurs
MPI_FILE_IREAD_AT(

<IN> descripteur,
<IN> position_fichier,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> requete,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
integer(kind=MPI_OFFSET_KIND) :: position_fichier
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_READ_AT(

<IN> descripteur,
<IN> position_fichier,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
integer(kind=MPI_OFFSET_KIND) :: position_fichier
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_READ_AT_ALL(

<IN> descripteur,
<IN> position_fichier,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
integer(kind=MPI_OFFSET_KIND) :: position_fichier
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_WRITE_AT(

<IN> descripteur,
<IN> position_fichier,
<IN> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, mode_seek, code
integer(kind=MPI_OFFSET_KIND) :: position_fichier
MPI_FILE_SEEK_SHARED(

<INOUT> descripteur,
<IN> position_fichier,
<IN> mode_seek,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_READ_SHARED(

<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_READ_ORDERED(

<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> statut,
<OUT> code)

integer :: descripteur, nb_valeurs, type_derive, code
<type et attributs>:: valeurs
MPI_FILE_READ_ORDERED_BEGIN(

<IN> descripteur,
<OUT> valeurs,
<IN> nb_valeurs,
<IN> type_derive,
<OUT> code)

integer :: descripteur, code
<type et attributs>:: valeurs
integer, dimension(MPI_STATUS_SIZE) :: statut
MPI_FILE_READ_ORDERED_END(

<IN> descripteur,
<OUT> valeurs,
<OUT> statut,
<OUT> code)

7 Constantes symboliques

MPI_ANY_TAG, MPI_ANY_SOURCE, MPI_SUCCESS, MPI_STATUS_IGNORE
MPI_CHARACTER, MPI_LOGICAL, MPI_INTEGER,
MPI_REAL, MPI_DOUBLE_PRECISION, MPI_COMPLEX,
MPI_COMM_NULL, MPI_COMM_WORLD,
MPI_PROC_NULL, MPI_STATUS_SIZE, MPI_UNDEFINED

